Fast numerical algorithm for the linear canonical transform
The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Curren...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2005-05, Vol.22 (5), p.928-937 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 937 |
---|---|
container_issue | 5 |
container_start_page | 928 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 22 |
creator | HENNELLY, Bryan M SHERIDAN, John T |
description | The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS. |
doi_str_mv | 10.1364/JOSAA.22.000928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67834281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67834281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-821296ab8e796edf8ff48493174d9e7c217fbc4461405fed93051492b37a816d3</originalsourceid><addsrcrecordid>eNpFkDtPwzAURi0EoqUws6EssKX1-yGmqqI8VKkDMFuOY9OgPIqdDPx7TBup073SPfeTvgPALYJzRDhdvG3fl8s5xnMIocLyDEwRwzCXjODztENJc8GwmoCrGL8TQ7kUl2CCmFSSMTIFj2sT-6wdGhcqa-rM1F9dqPpdk_kuZP3OZXXVOhMya9quPSB9MG1M1-YaXHhTR3czzhn4XD99rF7yzfb5dbXc5JZw3ucSI6y4KaQTirvSS--ppIogQUvlhMVI-MJSyhGFzLtSEcgQVbggwkjESzIDD8fcfeh-Bhd73VTRuro2reuGqLmQhGKJErg4gjZ0MQbn9T5UjQm_GkH970sffGmM9dFX-rgbo4eiceWJHwUl4H4ETEzlfepuq3jiuMAk1SN_zI5x1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67834281</pqid></control><display><type>article</type><title>Fast numerical algorithm for the linear canonical transform</title><source>Optica Publishing Group Journals</source><creator>HENNELLY, Bryan M ; SHERIDAN, John T</creator><creatorcontrib>HENNELLY, Bryan M ; SHERIDAN, John T</creatorcontrib><description>The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.22.000928</identifier><identifier>PMID: 15898553</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Imaging and optical processing ; Optics ; Physics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2005-05, Vol.22 (5), p.928-937</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-821296ab8e796edf8ff48493174d9e7c217fbc4461405fed93051492b37a816d3</citedby><cites>FETCH-LOGICAL-c366t-821296ab8e796edf8ff48493174d9e7c217fbc4461405fed93051492b37a816d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16723129$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15898553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HENNELLY, Bryan M</creatorcontrib><creatorcontrib>SHERIDAN, John T</creatorcontrib><title>Fast numerical algorithm for the linear canonical transform</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Imaging and optical processing</subject><subject>Optics</subject><subject>Physics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkDtPwzAURi0EoqUws6EssKX1-yGmqqI8VKkDMFuOY9OgPIqdDPx7TBup073SPfeTvgPALYJzRDhdvG3fl8s5xnMIocLyDEwRwzCXjODztENJc8GwmoCrGL8TQ7kUl2CCmFSSMTIFj2sT-6wdGhcqa-rM1F9dqPpdk_kuZP3OZXXVOhMya9quPSB9MG1M1-YaXHhTR3czzhn4XD99rF7yzfb5dbXc5JZw3ucSI6y4KaQTirvSS--ppIogQUvlhMVI-MJSyhGFzLtSEcgQVbggwkjESzIDD8fcfeh-Bhd73VTRuro2reuGqLmQhGKJErg4gjZ0MQbn9T5UjQm_GkH970sffGmM9dFX-rgbo4eiceWJHwUl4H4ETEzlfepuq3jiuMAk1SN_zI5x1g</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>HENNELLY, Bryan M</creator><creator>SHERIDAN, John T</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Fast numerical algorithm for the linear canonical transform</title><author>HENNELLY, Bryan M ; SHERIDAN, John T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-821296ab8e796edf8ff48493174d9e7c217fbc4461405fed93051492b37a816d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Imaging and optical processing</topic><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HENNELLY, Bryan M</creatorcontrib><creatorcontrib>SHERIDAN, John T</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HENNELLY, Bryan M</au><au>SHERIDAN, John T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast numerical algorithm for the linear canonical transform</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>22</volume><issue>5</issue><spage>928</spage><epage>937</epage><pages>928-937</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>15898553</pmid><doi>10.1364/JOSAA.22.000928</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2005-05, Vol.22 (5), p.928-937 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_proquest_miscellaneous_67834281 |
source | Optica Publishing Group Journals |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Imaging and optical processing Optics Physics |
title | Fast numerical algorithm for the linear canonical transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20numerical%20algorithm%20for%20the%20linear%20canonical%20transform&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=HENNELLY,%20Bryan%20M&rft.date=2005-05-01&rft.volume=22&rft.issue=5&rft.spage=928&rft.epage=937&rft.pages=928-937&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.22.000928&rft_dat=%3Cproquest_cross%3E67834281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67834281&rft_id=info:pmid/15898553&rfr_iscdi=true |