Visualisation of morphological changes in living intact human microvessels using confocal microscopy

Conventional techniques to visualise microvascular structure often involve fixed tissue slices that provide two-dimensional images. A previous study using diffusive labelling of fresh, dissected tissue samples with fluorescently-tagged endothelial markers demonstrated the possibility of examining th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microvascular research 2005-05, Vol.69 (3), p.173-177
Hauptverfasser: Hamid, Shabaz A., Howe, David C., Campbell, Steven, Daly, Craig J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 3
container_start_page 173
container_title Microvascular research
container_volume 69
creator Hamid, Shabaz A.
Howe, David C.
Campbell, Steven
Daly, Craig J.
description Conventional techniques to visualise microvascular structure often involve fixed tissue slices that provide two-dimensional images. A previous study using diffusive labelling of fresh, dissected tissue samples with fluorescently-tagged endothelial markers demonstrated the possibility of examining the three-dimensional architecture of the microvasculature using confocal microscopy. The present study extends the use of this quick and simple method of diffusive labelling to examine the possibility of repeatedly measuring changes in the morphology of intact microvessel in response to pharmacological stimuli. Initially, three-dimensional surface-rendered images of the same microvessel derived from the placenta and subcutaneous biopsies demonstrated morphological and topological changes in response to temperature and increasing potassium changes of physiological salt solutions, respectively. Furthermore, a dose–response study was performed with subcutaneous microvessels using the potent vasodilator, adrenomedullin. Analysis of a series of z-stack, superimposed to form a single maximum brightness image, demonstrated an inverse dose–response relationship, with responses to increasing adrenomedullin concentrations (10 −12 to 10 −8 M). In vessels that had constricted in response to noradrenaline (diameters: 22.4 to 58.0 μm), physiological concentrations of 10 −12 M increased vessel diameter by 108% above baseline conditions. Control treatment using physiological salt solution did not demonstrate any changes. The technique described suggest that diffusive labelling with vascular endothelial markers such as ulex europeaus agglutinin I in live tissue samples may be used in conjunction with confocal microscopy to demonstrate heterogeneous morphological and topological changes in intact segments of the microvasculature.
doi_str_mv 10.1016/j.mvr.2005.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67834216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026286205000245</els_id><sourcerecordid>67834216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a2a9637afc2de98fca5bceb1d9b5f1898c6361e520df25126873a679e3197cab3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoqXwA7ignLgl-IGdWJxQxUuqxAW4Wo6zaV0lcbCTSv33OLQSN06z0s6Mdj-ErgnOCCbibpu1O59RjHmGWRblBM0JljyVjMhTNMeYipQWgs7QRQhbjAnhkp6jGeGFFIzLOaq-bBh1Y4MerOsSVyet8_3GNW5tjW4Ss9HdGkJiu6SxO9ut4zRoMySbsdVd0lrj3Q5CgCYkY5j2xnW1m6K_u2Bcv79EZ7VuAlwddYE-n58-lq_p6v3lbfm4Sg3jZEg11fGqXNeGViCL2mheGihJJUtek0IWRjBBgFNc1ZQTKoqcaZFLiN_mRpdsgW4Pvb133yOEQbU2GGga3YEbgxJ5we4pEdFIDsbpwuChVr23rfZ7RbCa0KqtimjVhFZhpqLEzM2xfCxbqP4SR5bR8HAwRBaws-BVMBY6A5X1YAZVOftP_Q-NI4yL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67834216</pqid></control><display><type>article</type><title>Visualisation of morphological changes in living intact human microvessels using confocal microscopy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hamid, Shabaz A. ; Howe, David C. ; Campbell, Steven ; Daly, Craig J.</creator><creatorcontrib>Hamid, Shabaz A. ; Howe, David C. ; Campbell, Steven ; Daly, Craig J.</creatorcontrib><description>Conventional techniques to visualise microvascular structure often involve fixed tissue slices that provide two-dimensional images. A previous study using diffusive labelling of fresh, dissected tissue samples with fluorescently-tagged endothelial markers demonstrated the possibility of examining the three-dimensional architecture of the microvasculature using confocal microscopy. The present study extends the use of this quick and simple method of diffusive labelling to examine the possibility of repeatedly measuring changes in the morphology of intact microvessel in response to pharmacological stimuli. Initially, three-dimensional surface-rendered images of the same microvessel derived from the placenta and subcutaneous biopsies demonstrated morphological and topological changes in response to temperature and increasing potassium changes of physiological salt solutions, respectively. Furthermore, a dose–response study was performed with subcutaneous microvessels using the potent vasodilator, adrenomedullin. Analysis of a series of z-stack, superimposed to form a single maximum brightness image, demonstrated an inverse dose–response relationship, with responses to increasing adrenomedullin concentrations (10 −12 to 10 −8 M). In vessels that had constricted in response to noradrenaline (diameters: 22.4 to 58.0 μm), physiological concentrations of 10 −12 M increased vessel diameter by 108% above baseline conditions. Control treatment using physiological salt solution did not demonstrate any changes. The technique described suggest that diffusive labelling with vascular endothelial markers such as ulex europeaus agglutinin I in live tissue samples may be used in conjunction with confocal microscopy to demonstrate heterogeneous morphological and topological changes in intact segments of the microvasculature.</description><identifier>ISSN: 0026-2862</identifier><identifier>EISSN: 1095-9319</identifier><identifier>DOI: 10.1016/j.mvr.2005.03.005</identifier><identifier>PMID: 15896359</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adrenomedullin ; Biomarkers - metabolism ; Biopsy ; Confocal microscopy ; Dose-Response Relationship, Drug ; Female ; Humans ; Imaging, Three-Dimensional ; Live visualisation ; Microscopy, Confocal ; Microvessels ; Norepinephrine - pharmacology ; Peptides - pharmacology ; Placenta - blood supply ; Placenta - drug effects ; Placenta - physiology ; Placenta - surgery ; Plant Lectins - chemistry ; Plant Lectins - metabolism ; Potassium - pharmacology ; Pregnancy ; Subcutaneous Tissue - blood supply ; Subcutaneous Tissue - drug effects ; Subcutaneous Tissue - physiology ; Subcutaneous Tissue - surgery ; Three-dimensional surface rendered images ; Vasoconstrictor Agents - pharmacology ; Vasodilator Agents - pharmacology</subject><ispartof>Microvascular research, 2005-05, Vol.69 (3), p.173-177</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a2a9637afc2de98fca5bceb1d9b5f1898c6361e520df25126873a679e3197cab3</citedby><cites>FETCH-LOGICAL-c351t-a2a9637afc2de98fca5bceb1d9b5f1898c6361e520df25126873a679e3197cab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0026286205000245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15896359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamid, Shabaz A.</creatorcontrib><creatorcontrib>Howe, David C.</creatorcontrib><creatorcontrib>Campbell, Steven</creatorcontrib><creatorcontrib>Daly, Craig J.</creatorcontrib><title>Visualisation of morphological changes in living intact human microvessels using confocal microscopy</title><title>Microvascular research</title><addtitle>Microvasc Res</addtitle><description>Conventional techniques to visualise microvascular structure often involve fixed tissue slices that provide two-dimensional images. A previous study using diffusive labelling of fresh, dissected tissue samples with fluorescently-tagged endothelial markers demonstrated the possibility of examining the three-dimensional architecture of the microvasculature using confocal microscopy. The present study extends the use of this quick and simple method of diffusive labelling to examine the possibility of repeatedly measuring changes in the morphology of intact microvessel in response to pharmacological stimuli. Initially, three-dimensional surface-rendered images of the same microvessel derived from the placenta and subcutaneous biopsies demonstrated morphological and topological changes in response to temperature and increasing potassium changes of physiological salt solutions, respectively. Furthermore, a dose–response study was performed with subcutaneous microvessels using the potent vasodilator, adrenomedullin. Analysis of a series of z-stack, superimposed to form a single maximum brightness image, demonstrated an inverse dose–response relationship, with responses to increasing adrenomedullin concentrations (10 −12 to 10 −8 M). In vessels that had constricted in response to noradrenaline (diameters: 22.4 to 58.0 μm), physiological concentrations of 10 −12 M increased vessel diameter by 108% above baseline conditions. Control treatment using physiological salt solution did not demonstrate any changes. The technique described suggest that diffusive labelling with vascular endothelial markers such as ulex europeaus agglutinin I in live tissue samples may be used in conjunction with confocal microscopy to demonstrate heterogeneous morphological and topological changes in intact segments of the microvasculature.</description><subject>Adrenomedullin</subject><subject>Biomarkers - metabolism</subject><subject>Biopsy</subject><subject>Confocal microscopy</subject><subject>Dose-Response Relationship, Drug</subject><subject>Female</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Live visualisation</subject><subject>Microscopy, Confocal</subject><subject>Microvessels</subject><subject>Norepinephrine - pharmacology</subject><subject>Peptides - pharmacology</subject><subject>Placenta - blood supply</subject><subject>Placenta - drug effects</subject><subject>Placenta - physiology</subject><subject>Placenta - surgery</subject><subject>Plant Lectins - chemistry</subject><subject>Plant Lectins - metabolism</subject><subject>Potassium - pharmacology</subject><subject>Pregnancy</subject><subject>Subcutaneous Tissue - blood supply</subject><subject>Subcutaneous Tissue - drug effects</subject><subject>Subcutaneous Tissue - physiology</subject><subject>Subcutaneous Tissue - surgery</subject><subject>Three-dimensional surface rendered images</subject><subject>Vasoconstrictor Agents - pharmacology</subject><subject>Vasodilator Agents - pharmacology</subject><issn>0026-2862</issn><issn>1095-9319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EoqXwA7ignLgl-IGdWJxQxUuqxAW4Wo6zaV0lcbCTSv33OLQSN06z0s6Mdj-ErgnOCCbibpu1O59RjHmGWRblBM0JljyVjMhTNMeYipQWgs7QRQhbjAnhkp6jGeGFFIzLOaq-bBh1Y4MerOsSVyet8_3GNW5tjW4Ss9HdGkJiu6SxO9ut4zRoMySbsdVd0lrj3Q5CgCYkY5j2xnW1m6K_u2Bcv79EZ7VuAlwddYE-n58-lq_p6v3lbfm4Sg3jZEg11fGqXNeGViCL2mheGihJJUtek0IWRjBBgFNc1ZQTKoqcaZFLiN_mRpdsgW4Pvb133yOEQbU2GGga3YEbgxJ5we4pEdFIDsbpwuChVr23rfZ7RbCa0KqtimjVhFZhpqLEzM2xfCxbqP4SR5bR8HAwRBaws-BVMBY6A5X1YAZVOftP_Q-NI4yL</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Hamid, Shabaz A.</creator><creator>Howe, David C.</creator><creator>Campbell, Steven</creator><creator>Daly, Craig J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Visualisation of morphological changes in living intact human microvessels using confocal microscopy</title><author>Hamid, Shabaz A. ; Howe, David C. ; Campbell, Steven ; Daly, Craig J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a2a9637afc2de98fca5bceb1d9b5f1898c6361e520df25126873a679e3197cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adrenomedullin</topic><topic>Biomarkers - metabolism</topic><topic>Biopsy</topic><topic>Confocal microscopy</topic><topic>Dose-Response Relationship, Drug</topic><topic>Female</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Live visualisation</topic><topic>Microscopy, Confocal</topic><topic>Microvessels</topic><topic>Norepinephrine - pharmacology</topic><topic>Peptides - pharmacology</topic><topic>Placenta - blood supply</topic><topic>Placenta - drug effects</topic><topic>Placenta - physiology</topic><topic>Placenta - surgery</topic><topic>Plant Lectins - chemistry</topic><topic>Plant Lectins - metabolism</topic><topic>Potassium - pharmacology</topic><topic>Pregnancy</topic><topic>Subcutaneous Tissue - blood supply</topic><topic>Subcutaneous Tissue - drug effects</topic><topic>Subcutaneous Tissue - physiology</topic><topic>Subcutaneous Tissue - surgery</topic><topic>Three-dimensional surface rendered images</topic><topic>Vasoconstrictor Agents - pharmacology</topic><topic>Vasodilator Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamid, Shabaz A.</creatorcontrib><creatorcontrib>Howe, David C.</creatorcontrib><creatorcontrib>Campbell, Steven</creatorcontrib><creatorcontrib>Daly, Craig J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Microvascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamid, Shabaz A.</au><au>Howe, David C.</au><au>Campbell, Steven</au><au>Daly, Craig J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualisation of morphological changes in living intact human microvessels using confocal microscopy</atitle><jtitle>Microvascular research</jtitle><addtitle>Microvasc Res</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>69</volume><issue>3</issue><spage>173</spage><epage>177</epage><pages>173-177</pages><issn>0026-2862</issn><eissn>1095-9319</eissn><abstract>Conventional techniques to visualise microvascular structure often involve fixed tissue slices that provide two-dimensional images. A previous study using diffusive labelling of fresh, dissected tissue samples with fluorescently-tagged endothelial markers demonstrated the possibility of examining the three-dimensional architecture of the microvasculature using confocal microscopy. The present study extends the use of this quick and simple method of diffusive labelling to examine the possibility of repeatedly measuring changes in the morphology of intact microvessel in response to pharmacological stimuli. Initially, three-dimensional surface-rendered images of the same microvessel derived from the placenta and subcutaneous biopsies demonstrated morphological and topological changes in response to temperature and increasing potassium changes of physiological salt solutions, respectively. Furthermore, a dose–response study was performed with subcutaneous microvessels using the potent vasodilator, adrenomedullin. Analysis of a series of z-stack, superimposed to form a single maximum brightness image, demonstrated an inverse dose–response relationship, with responses to increasing adrenomedullin concentrations (10 −12 to 10 −8 M). In vessels that had constricted in response to noradrenaline (diameters: 22.4 to 58.0 μm), physiological concentrations of 10 −12 M increased vessel diameter by 108% above baseline conditions. Control treatment using physiological salt solution did not demonstrate any changes. The technique described suggest that diffusive labelling with vascular endothelial markers such as ulex europeaus agglutinin I in live tissue samples may be used in conjunction with confocal microscopy to demonstrate heterogeneous morphological and topological changes in intact segments of the microvasculature.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15896359</pmid><doi>10.1016/j.mvr.2005.03.005</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-2862
ispartof Microvascular research, 2005-05, Vol.69 (3), p.173-177
issn 0026-2862
1095-9319
language eng
recordid cdi_proquest_miscellaneous_67834216
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adrenomedullin
Biomarkers - metabolism
Biopsy
Confocal microscopy
Dose-Response Relationship, Drug
Female
Humans
Imaging, Three-Dimensional
Live visualisation
Microscopy, Confocal
Microvessels
Norepinephrine - pharmacology
Peptides - pharmacology
Placenta - blood supply
Placenta - drug effects
Placenta - physiology
Placenta - surgery
Plant Lectins - chemistry
Plant Lectins - metabolism
Potassium - pharmacology
Pregnancy
Subcutaneous Tissue - blood supply
Subcutaneous Tissue - drug effects
Subcutaneous Tissue - physiology
Subcutaneous Tissue - surgery
Three-dimensional surface rendered images
Vasoconstrictor Agents - pharmacology
Vasodilator Agents - pharmacology
title Visualisation of morphological changes in living intact human microvessels using confocal microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualisation%20of%20morphological%20changes%20in%20living%20intact%20human%20microvessels%20using%20confocal%20microscopy&rft.jtitle=Microvascular%20research&rft.au=Hamid,%20Shabaz%20A.&rft.date=2005-05-01&rft.volume=69&rft.issue=3&rft.spage=173&rft.epage=177&rft.pages=173-177&rft.issn=0026-2862&rft.eissn=1095-9319&rft_id=info:doi/10.1016/j.mvr.2005.03.005&rft_dat=%3Cproquest_cross%3E67834216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67834216&rft_id=info:pmid/15896359&rft_els_id=S0026286205000245&rfr_iscdi=true