Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay
Correct diagnosis of the tissue origin of a metastatic cancer is the first step in disease management, but it is frequently difficult using standard pathologic methods. Microarray-based gene expression profiling has shown great promise as a new tool to address this challenge. Adoption of microarray...
Gespeichert in:
Veröffentlicht in: | Archives of pathology & laboratory medicine (1976) 2006-04, Vol.130 (4), p.465-473 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 473 |
---|---|
container_issue | 4 |
container_start_page | 465 |
container_title | Archives of pathology & laboratory medicine (1976) |
container_volume | 130 |
creator | Ma, Xiao-Jun Patel, Rajesh Wang, Xianqun Salunga, Ranelle Murage, Jaji Desai, Rupal Tuggle, J Todd Wang, Wei Chu, Shirley Stecker, Kimberly Raja, Rajiv Robin, Howard Moore, Mat Baunoch, David Sgroi, Dennis Erlander, Mark |
description | Correct diagnosis of the tissue origin of a metastatic cancer is the first step in disease management, but it is frequently difficult using standard pathologic methods. Microarray-based gene expression profiling has shown great promise as a new tool to address this challenge.
Adoption of microarray technologies in the clinic remains limited. We aimed to bridge this technological gap by developing a real-time quantitative polymerase chain reaction (RT-PCR) assay.
We constructed a microarray database of 466 frozen and 112 formalin-fixed, paraffin-embedded (FFPE) samples of both primary and metastatic tumors, measuring expression of 22,000 genes. From the microarray database, we used a genetic algorithm to search for gene combinations optimal for multitumor classification. A 92-gene RT-PCR assay was then designed and used to generate a database for 481 frozen and 119 FFPE tumor samples.
The microarray-based K-nearest neighbor classifier demonstrated 84% accuracy in classifying 39 tumor types via cross-validation and 82% accuracy in predicting 112 independent FFPE samples. We successfully translated the microarray database to the RT-PCR platform, which allowed an overall success rate of 87% in classifying 32 different tumor classes in the validation set of 119 FFPE tumor samples.
The RT-PCR-based expression assay involving 92 genes represents a powerful tool for accurately and objectively identifying the site of origin for metastatic tumors, especially in the cases of cancer of unknown primary. The assay uses RT-PCR and routine FFPE samples, making it suitable for rapid clinical adoption. |
doi_str_mv | 10.5858/2006-130-465-mcohcu |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67831790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1141406461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-858ecc843eb80eac1a298c5dccbe219ce4654515f68304c2ff8e3b06d15fdb613</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxUVoaNy0nyBQRA-9KdW_laVjMW0TSMglOQvteDZW2JUcabfgb1-5MRR6EqP5vcfMPEKuBL_ubGe_Sc4NE4ozbTo2Qd7BckZWotOKSWG6d2TFOVfMOdtdkA-1vrTSSSnek4vWdnqt-Yrs7_OIsIyhUBhDrXGIEOaYE80D3S1TSBRCAiyVLjWmZxqok-wZE9KCYWRznJC-LiHNcW6630j3eTxMWEJFCrsQ05GDv47NPhw-kvMhjBU_nd5L8vTzx-Pmht09_LrdfL9joLWZWVsQAaxW2FveDESQzkK3BehRCgfYltad6AZjFdcgh8Gi6rnZtq9tb4S6JF_ffPclvy5YZz_FCjiOIWFeqjdrq8Ta8QZ--Q98yUtJbTYvheTKaCcbpN4gKLnWgoPflziFcvCC-2Ma_piGb2n4Npi_3zzcbJ6a6vPJeukn3P7TnM6v_gBC0ogs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212036492</pqid></control><display><type>article</type><title>Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay</title><source>MEDLINE</source><source>Allen Press Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ma, Xiao-Jun ; Patel, Rajesh ; Wang, Xianqun ; Salunga, Ranelle ; Murage, Jaji ; Desai, Rupal ; Tuggle, J Todd ; Wang, Wei ; Chu, Shirley ; Stecker, Kimberly ; Raja, Rajiv ; Robin, Howard ; Moore, Mat ; Baunoch, David ; Sgroi, Dennis ; Erlander, Mark</creator><creatorcontrib>Ma, Xiao-Jun ; Patel, Rajesh ; Wang, Xianqun ; Salunga, Ranelle ; Murage, Jaji ; Desai, Rupal ; Tuggle, J Todd ; Wang, Wei ; Chu, Shirley ; Stecker, Kimberly ; Raja, Rajiv ; Robin, Howard ; Moore, Mat ; Baunoch, David ; Sgroi, Dennis ; Erlander, Mark</creatorcontrib><description>Correct diagnosis of the tissue origin of a metastatic cancer is the first step in disease management, but it is frequently difficult using standard pathologic methods. Microarray-based gene expression profiling has shown great promise as a new tool to address this challenge.
Adoption of microarray technologies in the clinic remains limited. We aimed to bridge this technological gap by developing a real-time quantitative polymerase chain reaction (RT-PCR) assay.
We constructed a microarray database of 466 frozen and 112 formalin-fixed, paraffin-embedded (FFPE) samples of both primary and metastatic tumors, measuring expression of 22,000 genes. From the microarray database, we used a genetic algorithm to search for gene combinations optimal for multitumor classification. A 92-gene RT-PCR assay was then designed and used to generate a database for 481 frozen and 119 FFPE tumor samples.
The microarray-based K-nearest neighbor classifier demonstrated 84% accuracy in classifying 39 tumor types via cross-validation and 82% accuracy in predicting 112 independent FFPE samples. We successfully translated the microarray database to the RT-PCR platform, which allowed an overall success rate of 87% in classifying 32 different tumor classes in the validation set of 119 FFPE tumor samples.
The RT-PCR-based expression assay involving 92 genes represents a powerful tool for accurately and objectively identifying the site of origin for metastatic tumors, especially in the cases of cancer of unknown primary. The assay uses RT-PCR and routine FFPE samples, making it suitable for rapid clinical adoption.</description><identifier>ISSN: 0003-9985</identifier><identifier>EISSN: 1543-2165</identifier><identifier>DOI: 10.5858/2006-130-465-mcohcu</identifier><identifier>PMID: 16594740</identifier><identifier>CODEN: APLMAS</identifier><language>eng</language><publisher>United States: College of American Pathologists</publisher><subject>Accuracy ; Algorithms ; Cancer ; Classification ; Databases, Factual ; Female ; Gene expression ; Gene Expression Profiling ; Humans ; Male ; Metastasis ; Neoplasm Metastasis - diagnosis ; Neoplasm Metastasis - genetics ; Neoplasms - classification ; Neoplasms - diagnosis ; Neoplasms - genetics ; Oligonucleotide Array Sequence Analysis - methods ; Polymerase chain reaction ; Reverse Transcriptase Polymerase Chain Reaction - methods ; Success ; Support vector machines ; Tumors</subject><ispartof>Archives of pathology & laboratory medicine (1976), 2006-04, Vol.130 (4), p.465-473</ispartof><rights>Copyright College of American Pathologists Apr 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-858ecc843eb80eac1a298c5dccbe219ce4654515f68304c2ff8e3b06d15fdb613</citedby><cites>FETCH-LOGICAL-c446t-858ecc843eb80eac1a298c5dccbe219ce4654515f68304c2ff8e3b06d15fdb613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16594740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Xiao-Jun</creatorcontrib><creatorcontrib>Patel, Rajesh</creatorcontrib><creatorcontrib>Wang, Xianqun</creatorcontrib><creatorcontrib>Salunga, Ranelle</creatorcontrib><creatorcontrib>Murage, Jaji</creatorcontrib><creatorcontrib>Desai, Rupal</creatorcontrib><creatorcontrib>Tuggle, J Todd</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Chu, Shirley</creatorcontrib><creatorcontrib>Stecker, Kimberly</creatorcontrib><creatorcontrib>Raja, Rajiv</creatorcontrib><creatorcontrib>Robin, Howard</creatorcontrib><creatorcontrib>Moore, Mat</creatorcontrib><creatorcontrib>Baunoch, David</creatorcontrib><creatorcontrib>Sgroi, Dennis</creatorcontrib><creatorcontrib>Erlander, Mark</creatorcontrib><title>Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay</title><title>Archives of pathology & laboratory medicine (1976)</title><addtitle>Arch Pathol Lab Med</addtitle><description>Correct diagnosis of the tissue origin of a metastatic cancer is the first step in disease management, but it is frequently difficult using standard pathologic methods. Microarray-based gene expression profiling has shown great promise as a new tool to address this challenge.
Adoption of microarray technologies in the clinic remains limited. We aimed to bridge this technological gap by developing a real-time quantitative polymerase chain reaction (RT-PCR) assay.
We constructed a microarray database of 466 frozen and 112 formalin-fixed, paraffin-embedded (FFPE) samples of both primary and metastatic tumors, measuring expression of 22,000 genes. From the microarray database, we used a genetic algorithm to search for gene combinations optimal for multitumor classification. A 92-gene RT-PCR assay was then designed and used to generate a database for 481 frozen and 119 FFPE tumor samples.
The microarray-based K-nearest neighbor classifier demonstrated 84% accuracy in classifying 39 tumor types via cross-validation and 82% accuracy in predicting 112 independent FFPE samples. We successfully translated the microarray database to the RT-PCR platform, which allowed an overall success rate of 87% in classifying 32 different tumor classes in the validation set of 119 FFPE tumor samples.
The RT-PCR-based expression assay involving 92 genes represents a powerful tool for accurately and objectively identifying the site of origin for metastatic tumors, especially in the cases of cancer of unknown primary. The assay uses RT-PCR and routine FFPE samples, making it suitable for rapid clinical adoption.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cancer</subject><subject>Classification</subject><subject>Databases, Factual</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Male</subject><subject>Metastasis</subject><subject>Neoplasm Metastasis - diagnosis</subject><subject>Neoplasm Metastasis - genetics</subject><subject>Neoplasms - classification</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Polymerase chain reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>Success</subject><subject>Support vector machines</subject><subject>Tumors</subject><issn>0003-9985</issn><issn>1543-2165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU9rGzEQxUVoaNy0nyBQRA-9KdW_laVjMW0TSMglOQvteDZW2JUcabfgb1-5MRR6EqP5vcfMPEKuBL_ubGe_Sc4NE4ozbTo2Qd7BckZWotOKSWG6d2TFOVfMOdtdkA-1vrTSSSnek4vWdnqt-Yrs7_OIsIyhUBhDrXGIEOaYE80D3S1TSBRCAiyVLjWmZxqok-wZE9KCYWRznJC-LiHNcW6630j3eTxMWEJFCrsQ05GDv47NPhw-kvMhjBU_nd5L8vTzx-Pmht09_LrdfL9joLWZWVsQAaxW2FveDESQzkK3BehRCgfYltad6AZjFdcgh8Gi6rnZtq9tb4S6JF_ffPclvy5YZz_FCjiOIWFeqjdrq8Ta8QZ--Q98yUtJbTYvheTKaCcbpN4gKLnWgoPflziFcvCC-2Ma_piGb2n4Npi_3zzcbJ6a6vPJeukn3P7TnM6v_gBC0ogs</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Ma, Xiao-Jun</creator><creator>Patel, Rajesh</creator><creator>Wang, Xianqun</creator><creator>Salunga, Ranelle</creator><creator>Murage, Jaji</creator><creator>Desai, Rupal</creator><creator>Tuggle, J Todd</creator><creator>Wang, Wei</creator><creator>Chu, Shirley</creator><creator>Stecker, Kimberly</creator><creator>Raja, Rajiv</creator><creator>Robin, Howard</creator><creator>Moore, Mat</creator><creator>Baunoch, David</creator><creator>Sgroi, Dennis</creator><creator>Erlander, Mark</creator><general>College of American Pathologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200604</creationdate><title>Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay</title><author>Ma, Xiao-Jun ; Patel, Rajesh ; Wang, Xianqun ; Salunga, Ranelle ; Murage, Jaji ; Desai, Rupal ; Tuggle, J Todd ; Wang, Wei ; Chu, Shirley ; Stecker, Kimberly ; Raja, Rajiv ; Robin, Howard ; Moore, Mat ; Baunoch, David ; Sgroi, Dennis ; Erlander, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-858ecc843eb80eac1a298c5dccbe219ce4654515f68304c2ff8e3b06d15fdb613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cancer</topic><topic>Classification</topic><topic>Databases, Factual</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Male</topic><topic>Metastasis</topic><topic>Neoplasm Metastasis - diagnosis</topic><topic>Neoplasm Metastasis - genetics</topic><topic>Neoplasms - classification</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Polymerase chain reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>Success</topic><topic>Support vector machines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiao-Jun</creatorcontrib><creatorcontrib>Patel, Rajesh</creatorcontrib><creatorcontrib>Wang, Xianqun</creatorcontrib><creatorcontrib>Salunga, Ranelle</creatorcontrib><creatorcontrib>Murage, Jaji</creatorcontrib><creatorcontrib>Desai, Rupal</creatorcontrib><creatorcontrib>Tuggle, J Todd</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Chu, Shirley</creatorcontrib><creatorcontrib>Stecker, Kimberly</creatorcontrib><creatorcontrib>Raja, Rajiv</creatorcontrib><creatorcontrib>Robin, Howard</creatorcontrib><creatorcontrib>Moore, Mat</creatorcontrib><creatorcontrib>Baunoch, David</creatorcontrib><creatorcontrib>Sgroi, Dennis</creatorcontrib><creatorcontrib>Erlander, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of pathology & laboratory medicine (1976)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiao-Jun</au><au>Patel, Rajesh</au><au>Wang, Xianqun</au><au>Salunga, Ranelle</au><au>Murage, Jaji</au><au>Desai, Rupal</au><au>Tuggle, J Todd</au><au>Wang, Wei</au><au>Chu, Shirley</au><au>Stecker, Kimberly</au><au>Raja, Rajiv</au><au>Robin, Howard</au><au>Moore, Mat</au><au>Baunoch, David</au><au>Sgroi, Dennis</au><au>Erlander, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay</atitle><jtitle>Archives of pathology & laboratory medicine (1976)</jtitle><addtitle>Arch Pathol Lab Med</addtitle><date>2006-04</date><risdate>2006</risdate><volume>130</volume><issue>4</issue><spage>465</spage><epage>473</epage><pages>465-473</pages><issn>0003-9985</issn><eissn>1543-2165</eissn><coden>APLMAS</coden><abstract>Correct diagnosis of the tissue origin of a metastatic cancer is the first step in disease management, but it is frequently difficult using standard pathologic methods. Microarray-based gene expression profiling has shown great promise as a new tool to address this challenge.
Adoption of microarray technologies in the clinic remains limited. We aimed to bridge this technological gap by developing a real-time quantitative polymerase chain reaction (RT-PCR) assay.
We constructed a microarray database of 466 frozen and 112 formalin-fixed, paraffin-embedded (FFPE) samples of both primary and metastatic tumors, measuring expression of 22,000 genes. From the microarray database, we used a genetic algorithm to search for gene combinations optimal for multitumor classification. A 92-gene RT-PCR assay was then designed and used to generate a database for 481 frozen and 119 FFPE tumor samples.
The microarray-based K-nearest neighbor classifier demonstrated 84% accuracy in classifying 39 tumor types via cross-validation and 82% accuracy in predicting 112 independent FFPE samples. We successfully translated the microarray database to the RT-PCR platform, which allowed an overall success rate of 87% in classifying 32 different tumor classes in the validation set of 119 FFPE tumor samples.
The RT-PCR-based expression assay involving 92 genes represents a powerful tool for accurately and objectively identifying the site of origin for metastatic tumors, especially in the cases of cancer of unknown primary. The assay uses RT-PCR and routine FFPE samples, making it suitable for rapid clinical adoption.</abstract><cop>United States</cop><pub>College of American Pathologists</pub><pmid>16594740</pmid><doi>10.5858/2006-130-465-mcohcu</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9985 |
ispartof | Archives of pathology & laboratory medicine (1976), 2006-04, Vol.130 (4), p.465-473 |
issn | 0003-9985 1543-2165 |
language | eng |
recordid | cdi_proquest_miscellaneous_67831790 |
source | MEDLINE; Allen Press Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Cancer Classification Databases, Factual Female Gene expression Gene Expression Profiling Humans Male Metastasis Neoplasm Metastasis - diagnosis Neoplasm Metastasis - genetics Neoplasms - classification Neoplasms - diagnosis Neoplasms - genetics Oligonucleotide Array Sequence Analysis - methods Polymerase chain reaction Reverse Transcriptase Polymerase Chain Reaction - methods Success Support vector machines Tumors |
title | Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20classification%20of%20human%20cancers%20using%20a%2092-gene%20real-time%20quantitative%20polymerase%20chain%20reaction%20assay&rft.jtitle=Archives%20of%20pathology%20&%20laboratory%20medicine%20(1976)&rft.au=Ma,%20Xiao-Jun&rft.date=2006-04&rft.volume=130&rft.issue=4&rft.spage=465&rft.epage=473&rft.pages=465-473&rft.issn=0003-9985&rft.eissn=1543-2165&rft.coden=APLMAS&rft_id=info:doi/10.5858/2006-130-465-mcohcu&rft_dat=%3Cproquest_cross%3E1141406461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212036492&rft_id=info:pmid/16594740&rfr_iscdi=true |