A model for predicting age at menopause in white women

To develop a model to predict the age at natural menopause and the risk for premenopausal hysterectomy. Cross-sectional study. Multicenter study. A total of 1,345 white women. Ten single nucleotide polymorphisms (SNPs) of seven estrogen (E)-metabolizing genes (i.e., catechol- O-methyltransferase, 17...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fertility and sterility 2006-02, Vol.85 (2), p.451-454
Hauptverfasser: Hefler, Lukas A., Grimm, Christoph, Bentz, Eva-Katrin, Reinthaller, Alexander, Heinze, Georg, Tempfer, Clemens B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 2
container_start_page 451
container_title Fertility and sterility
container_volume 85
creator Hefler, Lukas A.
Grimm, Christoph
Bentz, Eva-Katrin
Reinthaller, Alexander
Heinze, Georg
Tempfer, Clemens B.
description To develop a model to predict the age at natural menopause and the risk for premenopausal hysterectomy. Cross-sectional study. Multicenter study. A total of 1,345 white women. Ten single nucleotide polymorphisms (SNPs) of seven estrogen (E)-metabolizing genes (i.e., catechol- O-methyltransferase, 17-β-hydroxysteroid dehydrogenase type 1, cytochrome P-450 [CYP] 17, CYP1A1, CYP1B1, CYP19, and E receptor [ER] α) were analyzed by sequencing-on-chip-technology. Patients’ reproductive and medical histories were ascertained and correlated to genotypes. The model incorporates the number of full term pregnancies, the body mass index (BMI), a history of breast surgery, and the presence of CYP17 and CYP1B1-4 polymorphisms as well as the BMI to predict age at natural menopause and the risk for undergoing premenopausal hysterectomy. We present the first model to date, which can predict age at natural menopause and the risk for undergoing premenopausal hysterectomy based on genotype information and personal history.
doi_str_mv 10.1016/j.fertnstert.2005.07.1300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67829205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0015028205036800</els_id><sourcerecordid>67829205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-1124126245af70c8b6550939b66b65da9095f5e49c993b1f29cc2a5952f56fb93</originalsourceid><addsrcrecordid>eNqNkE1v2zAMhoViRZum_QuDdlhvdinZlKNjEGxdgQC7rGdBlqlWgT8yyVnQf18bCZDrLiQhPKRePIx9E5ALEOppl3uKY5_GqeYSAHOoclEAXLGFQFQZKiy-sAWAwAzkSt6yu5R2AKBEJW_YrVCoUUq1YGrNu6Ghlvsh8n2kJrgx9G_cvhG3I--oH_b2kIiHnh_fw0j8OEyP9-za2zbRw7kv2evPH382v7Lt7-eXzXqbuRLVmAkhSyGVLNH6CtyqVoigC10rNY2N1aDRI5XaaV3UwkvtnLRzNo_K17pYssfT3X0c_h4ojaYLyVHb2p6GQzKqWkktASdQn0AXh5QiebOPobPxwwgwszSzMxdpZpZmoDKztGn36_mTQ91Rc9k8W5qA72fAJmdbH23vQrpwValxpecQmxNHk5J_gaJJLlDvJquR3GiaIfxHnE8IPo6B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67829205</pqid></control><display><type>article</type><title>A model for predicting age at menopause in white women</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hefler, Lukas A. ; Grimm, Christoph ; Bentz, Eva-Katrin ; Reinthaller, Alexander ; Heinze, Georg ; Tempfer, Clemens B.</creator><creatorcontrib>Hefler, Lukas A. ; Grimm, Christoph ; Bentz, Eva-Katrin ; Reinthaller, Alexander ; Heinze, Georg ; Tempfer, Clemens B.</creatorcontrib><description>To develop a model to predict the age at natural menopause and the risk for premenopausal hysterectomy. Cross-sectional study. Multicenter study. A total of 1,345 white women. Ten single nucleotide polymorphisms (SNPs) of seven estrogen (E)-metabolizing genes (i.e., catechol- O-methyltransferase, 17-β-hydroxysteroid dehydrogenase type 1, cytochrome P-450 [CYP] 17, CYP1A1, CYP1B1, CYP19, and E receptor [ER] α) were analyzed by sequencing-on-chip-technology. Patients’ reproductive and medical histories were ascertained and correlated to genotypes. The model incorporates the number of full term pregnancies, the body mass index (BMI), a history of breast surgery, and the presence of CYP17 and CYP1B1-4 polymorphisms as well as the BMI to predict age at natural menopause and the risk for undergoing premenopausal hysterectomy. We present the first model to date, which can predict age at natural menopause and the risk for undergoing premenopausal hysterectomy based on genotype information and personal history.</description><identifier>ISSN: 0015-0282</identifier><identifier>EISSN: 1556-5653</identifier><identifier>DOI: 10.1016/j.fertnstert.2005.07.1300</identifier><identifier>PMID: 16595226</identifier><identifier>CODEN: FESTAS</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>age ; Aging - physiology ; Aryl Hydrocarbon Hydroxylases ; Biological and medical sciences ; Body Mass Index ; Breast - surgery ; Cross-Sectional Studies ; Cytochrome P-450 CYP1B1 ; Cytochrome P-450 Enzyme System - genetics ; estrogen ; Female ; gene ; Genotype ; Gynecology. Andrology. Obstetrics ; Humans ; Hysterectomy ; Linear Models ; Medical Records ; Medical sciences ; Menopause ; Models, Biological ; Parity ; polymorphism ; Polymorphism, Genetic ; Pregnancy ; Premenopause ; Risk Assessment ; Steroid 17-alpha-Hydroxylase - genetics ; timing</subject><ispartof>Fertility and sterility, 2006-02, Vol.85 (2), p.451-454</ispartof><rights>2006 American Society for Reproductive Medicine</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-1124126245af70c8b6550939b66b65da9095f5e49c993b1f29cc2a5952f56fb93</citedby><cites>FETCH-LOGICAL-c456t-1124126245af70c8b6550939b66b65da9095f5e49c993b1f29cc2a5952f56fb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fertnstert.2005.07.1300$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17495895$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16595226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hefler, Lukas A.</creatorcontrib><creatorcontrib>Grimm, Christoph</creatorcontrib><creatorcontrib>Bentz, Eva-Katrin</creatorcontrib><creatorcontrib>Reinthaller, Alexander</creatorcontrib><creatorcontrib>Heinze, Georg</creatorcontrib><creatorcontrib>Tempfer, Clemens B.</creatorcontrib><title>A model for predicting age at menopause in white women</title><title>Fertility and sterility</title><addtitle>Fertil Steril</addtitle><description>To develop a model to predict the age at natural menopause and the risk for premenopausal hysterectomy. Cross-sectional study. Multicenter study. A total of 1,345 white women. Ten single nucleotide polymorphisms (SNPs) of seven estrogen (E)-metabolizing genes (i.e., catechol- O-methyltransferase, 17-β-hydroxysteroid dehydrogenase type 1, cytochrome P-450 [CYP] 17, CYP1A1, CYP1B1, CYP19, and E receptor [ER] α) were analyzed by sequencing-on-chip-technology. Patients’ reproductive and medical histories were ascertained and correlated to genotypes. The model incorporates the number of full term pregnancies, the body mass index (BMI), a history of breast surgery, and the presence of CYP17 and CYP1B1-4 polymorphisms as well as the BMI to predict age at natural menopause and the risk for undergoing premenopausal hysterectomy. We present the first model to date, which can predict age at natural menopause and the risk for undergoing premenopausal hysterectomy based on genotype information and personal history.</description><subject>age</subject><subject>Aging - physiology</subject><subject>Aryl Hydrocarbon Hydroxylases</subject><subject>Biological and medical sciences</subject><subject>Body Mass Index</subject><subject>Breast - surgery</subject><subject>Cross-Sectional Studies</subject><subject>Cytochrome P-450 CYP1B1</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>estrogen</subject><subject>Female</subject><subject>gene</subject><subject>Genotype</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Humans</subject><subject>Hysterectomy</subject><subject>Linear Models</subject><subject>Medical Records</subject><subject>Medical sciences</subject><subject>Menopause</subject><subject>Models, Biological</subject><subject>Parity</subject><subject>polymorphism</subject><subject>Polymorphism, Genetic</subject><subject>Pregnancy</subject><subject>Premenopause</subject><subject>Risk Assessment</subject><subject>Steroid 17-alpha-Hydroxylase - genetics</subject><subject>timing</subject><issn>0015-0282</issn><issn>1556-5653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v2zAMhoViRZum_QuDdlhvdinZlKNjEGxdgQC7rGdBlqlWgT8yyVnQf18bCZDrLiQhPKRePIx9E5ALEOppl3uKY5_GqeYSAHOoclEAXLGFQFQZKiy-sAWAwAzkSt6yu5R2AKBEJW_YrVCoUUq1YGrNu6Ghlvsh8n2kJrgx9G_cvhG3I--oH_b2kIiHnh_fw0j8OEyP9-za2zbRw7kv2evPH382v7Lt7-eXzXqbuRLVmAkhSyGVLNH6CtyqVoigC10rNY2N1aDRI5XaaV3UwkvtnLRzNo_K17pYssfT3X0c_h4ojaYLyVHb2p6GQzKqWkktASdQn0AXh5QiebOPobPxwwgwszSzMxdpZpZmoDKztGn36_mTQ91Rc9k8W5qA72fAJmdbH23vQrpwValxpecQmxNHk5J_gaJJLlDvJquR3GiaIfxHnE8IPo6B</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Hefler, Lukas A.</creator><creator>Grimm, Christoph</creator><creator>Bentz, Eva-Katrin</creator><creator>Reinthaller, Alexander</creator><creator>Heinze, Georg</creator><creator>Tempfer, Clemens B.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>A model for predicting age at menopause in white women</title><author>Hefler, Lukas A. ; Grimm, Christoph ; Bentz, Eva-Katrin ; Reinthaller, Alexander ; Heinze, Georg ; Tempfer, Clemens B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-1124126245af70c8b6550939b66b65da9095f5e49c993b1f29cc2a5952f56fb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>age</topic><topic>Aging - physiology</topic><topic>Aryl Hydrocarbon Hydroxylases</topic><topic>Biological and medical sciences</topic><topic>Body Mass Index</topic><topic>Breast - surgery</topic><topic>Cross-Sectional Studies</topic><topic>Cytochrome P-450 CYP1B1</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>estrogen</topic><topic>Female</topic><topic>gene</topic><topic>Genotype</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Humans</topic><topic>Hysterectomy</topic><topic>Linear Models</topic><topic>Medical Records</topic><topic>Medical sciences</topic><topic>Menopause</topic><topic>Models, Biological</topic><topic>Parity</topic><topic>polymorphism</topic><topic>Polymorphism, Genetic</topic><topic>Pregnancy</topic><topic>Premenopause</topic><topic>Risk Assessment</topic><topic>Steroid 17-alpha-Hydroxylase - genetics</topic><topic>timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hefler, Lukas A.</creatorcontrib><creatorcontrib>Grimm, Christoph</creatorcontrib><creatorcontrib>Bentz, Eva-Katrin</creatorcontrib><creatorcontrib>Reinthaller, Alexander</creatorcontrib><creatorcontrib>Heinze, Georg</creatorcontrib><creatorcontrib>Tempfer, Clemens B.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Fertility and sterility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hefler, Lukas A.</au><au>Grimm, Christoph</au><au>Bentz, Eva-Katrin</au><au>Reinthaller, Alexander</au><au>Heinze, Georg</au><au>Tempfer, Clemens B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for predicting age at menopause in white women</atitle><jtitle>Fertility and sterility</jtitle><addtitle>Fertil Steril</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>85</volume><issue>2</issue><spage>451</spage><epage>454</epage><pages>451-454</pages><issn>0015-0282</issn><eissn>1556-5653</eissn><coden>FESTAS</coden><abstract>To develop a model to predict the age at natural menopause and the risk for premenopausal hysterectomy. Cross-sectional study. Multicenter study. A total of 1,345 white women. Ten single nucleotide polymorphisms (SNPs) of seven estrogen (E)-metabolizing genes (i.e., catechol- O-methyltransferase, 17-β-hydroxysteroid dehydrogenase type 1, cytochrome P-450 [CYP] 17, CYP1A1, CYP1B1, CYP19, and E receptor [ER] α) were analyzed by sequencing-on-chip-technology. Patients’ reproductive and medical histories were ascertained and correlated to genotypes. The model incorporates the number of full term pregnancies, the body mass index (BMI), a history of breast surgery, and the presence of CYP17 and CYP1B1-4 polymorphisms as well as the BMI to predict age at natural menopause and the risk for undergoing premenopausal hysterectomy. We present the first model to date, which can predict age at natural menopause and the risk for undergoing premenopausal hysterectomy based on genotype information and personal history.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>16595226</pmid><doi>10.1016/j.fertnstert.2005.07.1300</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0015-0282
ispartof Fertility and sterility, 2006-02, Vol.85 (2), p.451-454
issn 0015-0282
1556-5653
language eng
recordid cdi_proquest_miscellaneous_67829205
source MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects age
Aging - physiology
Aryl Hydrocarbon Hydroxylases
Biological and medical sciences
Body Mass Index
Breast - surgery
Cross-Sectional Studies
Cytochrome P-450 CYP1B1
Cytochrome P-450 Enzyme System - genetics
estrogen
Female
gene
Genotype
Gynecology. Andrology. Obstetrics
Humans
Hysterectomy
Linear Models
Medical Records
Medical sciences
Menopause
Models, Biological
Parity
polymorphism
Polymorphism, Genetic
Pregnancy
Premenopause
Risk Assessment
Steroid 17-alpha-Hydroxylase - genetics
timing
title A model for predicting age at menopause in white women
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20predicting%20age%20at%20menopause%20in%20white%20women&rft.jtitle=Fertility%20and%20sterility&rft.au=Hefler,%20Lukas%20A.&rft.date=2006-02-01&rft.volume=85&rft.issue=2&rft.spage=451&rft.epage=454&rft.pages=451-454&rft.issn=0015-0282&rft.eissn=1556-5653&rft.coden=FESTAS&rft_id=info:doi/10.1016/j.fertnstert.2005.07.1300&rft_dat=%3Cproquest_cross%3E67829205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67829205&rft_id=info:pmid/16595226&rft_els_id=S0015028205036800&rfr_iscdi=true