Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis

Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2006-07, Vol.27 (19), p.3570-3579
Hauptverfasser: Thanos, Christopher G., Bintz, Briannan E., Bell, William J., Qian, Haitao, Schneider, Patricia A., MacArthur, Daniel H., Emerich, Dwaine F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3579
container_issue 19
container_start_page 3570
container_title Biomaterials
container_volume 27
creator Thanos, Christopher G.
Bintz, Briannan E.
Bell, William J.
Qian, Haitao
Schneider, Patricia A.
MacArthur, Daniel H.
Emerich, Dwaine F.
description Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources.
doi_str_mv 10.1016/j.biomaterials.2006.01.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67829035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961206001311</els_id><sourcerecordid>19447574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-853b64c1cff8b57c6a4e9ebdead57aae2bdd6890400526d928942b6aca1ad8513</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhFZDFgVuC7ThO3FtVWlipCAnK2ZrYE_AqcYLtRdob78Ab8iS42pXgVk6jkb6ZfzQfIa84qznj6s2uHvwyQ8boYUq1YEzVjNdMikdkw_uur1rN2sdkw7gUlVZcnJFnKe1Y6Qv0lJxxJXXXdHJDcBtyhLWsyktAmGjKMPjJ5wNdRgrTVx9K0O-fv9ZlOiwx-PzNB6Szt3GxsKb9hIn6QCPkdEEvA725236iEBz9fP2hVJgOyafn5MlYTsUXp3pOvtxc3129r24_vtteXd5WVkqWq75tBiUtt-PYD21nFUjUODgE13YAKAbnVK-ZZKwVymnRaykGBRY4uL7lzTl5fdy7xuX7HlM2s08WpwkCLvtkVNcLzZr2QVBoyZuuEQ-CXEvZtZ0s4MURLI9JKeJo1uhniAfDmbnXZnbmX23mXpth3BQjZfjlKWU_zOj-jp48FeDtEcDyvR8eo0nWY7DofESbjVv8_-T8AfAUsoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19447574</pqid></control><display><type>article</type><title>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Thanos, Christopher G. ; Bintz, Briannan E. ; Bell, William J. ; Qian, Haitao ; Schneider, Patricia A. ; MacArthur, Daniel H. ; Emerich, Dwaine F.</creator><creatorcontrib>Thanos, Christopher G. ; Bintz, Briannan E. ; Bell, William J. ; Qian, Haitao ; Schneider, Patricia A. ; MacArthur, Daniel H. ; Emerich, Dwaine F.</creatorcontrib><description>Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2006.01.042</identifier><identifier>PMID: 16497374</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alginate ; Alginates - chemistry ; Alginates - pharmacokinetics ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacokinetics ; Biodegradation ; Capsules ; Cell encapsulation ; Drug Delivery Systems ; Drug Stability ; FTIR ; Hydrogel ; Magnetic Resonance Spectroscopy ; Male ; Materials Testing ; Microscopy, Electron, Scanning ; Molecular Structure ; Peptides - chemistry ; Peptides - pharmacokinetics ; Peritoneal Cavity ; Rats ; Rats, Long-Evans ; SEM ; Spectroscopy, Fourier Transform Infrared ; Surface Properties</subject><ispartof>Biomaterials, 2006-07, Vol.27 (19), p.3570-3579</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-853b64c1cff8b57c6a4e9ebdead57aae2bdd6890400526d928942b6aca1ad8513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2006.01.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16497374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thanos, Christopher G.</creatorcontrib><creatorcontrib>Bintz, Briannan E.</creatorcontrib><creatorcontrib>Bell, William J.</creatorcontrib><creatorcontrib>Qian, Haitao</creatorcontrib><creatorcontrib>Schneider, Patricia A.</creatorcontrib><creatorcontrib>MacArthur, Daniel H.</creatorcontrib><creatorcontrib>Emerich, Dwaine F.</creatorcontrib><title>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources.</description><subject>Alginate</subject><subject>Alginates - chemistry</subject><subject>Alginates - pharmacokinetics</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacokinetics</subject><subject>Biodegradation</subject><subject>Capsules</subject><subject>Cell encapsulation</subject><subject>Drug Delivery Systems</subject><subject>Drug Stability</subject><subject>FTIR</subject><subject>Hydrogel</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molecular Structure</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacokinetics</subject><subject>Peritoneal Cavity</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>SEM</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EokvhFZDFgVuC7ThO3FtVWlipCAnK2ZrYE_AqcYLtRdob78Ab8iS42pXgVk6jkb6ZfzQfIa84qznj6s2uHvwyQ8boYUq1YEzVjNdMikdkw_uur1rN2sdkw7gUlVZcnJFnKe1Y6Qv0lJxxJXXXdHJDcBtyhLWsyktAmGjKMPjJ5wNdRgrTVx9K0O-fv9ZlOiwx-PzNB6Szt3GxsKb9hIn6QCPkdEEvA725236iEBz9fP2hVJgOyafn5MlYTsUXp3pOvtxc3129r24_vtteXd5WVkqWq75tBiUtt-PYD21nFUjUODgE13YAKAbnVK-ZZKwVymnRaykGBRY4uL7lzTl5fdy7xuX7HlM2s08WpwkCLvtkVNcLzZr2QVBoyZuuEQ-CXEvZtZ0s4MURLI9JKeJo1uhniAfDmbnXZnbmX23mXpth3BQjZfjlKWU_zOj-jp48FeDtEcDyvR8eo0nWY7DofESbjVv8_-T8AfAUsoE</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Thanos, Christopher G.</creator><creator>Bintz, Briannan E.</creator><creator>Bell, William J.</creator><creator>Qian, Haitao</creator><creator>Schneider, Patricia A.</creator><creator>MacArthur, Daniel H.</creator><creator>Emerich, Dwaine F.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</title><author>Thanos, Christopher G. ; Bintz, Briannan E. ; Bell, William J. ; Qian, Haitao ; Schneider, Patricia A. ; MacArthur, Daniel H. ; Emerich, Dwaine F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-853b64c1cff8b57c6a4e9ebdead57aae2bdd6890400526d928942b6aca1ad8513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alginate</topic><topic>Alginates - chemistry</topic><topic>Alginates - pharmacokinetics</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacokinetics</topic><topic>Biodegradation</topic><topic>Capsules</topic><topic>Cell encapsulation</topic><topic>Drug Delivery Systems</topic><topic>Drug Stability</topic><topic>FTIR</topic><topic>Hydrogel</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molecular Structure</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacokinetics</topic><topic>Peritoneal Cavity</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>SEM</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanos, Christopher G.</creatorcontrib><creatorcontrib>Bintz, Briannan E.</creatorcontrib><creatorcontrib>Bell, William J.</creatorcontrib><creatorcontrib>Qian, Haitao</creatorcontrib><creatorcontrib>Schneider, Patricia A.</creatorcontrib><creatorcontrib>MacArthur, Daniel H.</creatorcontrib><creatorcontrib>Emerich, Dwaine F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanos, Christopher G.</au><au>Bintz, Briannan E.</au><au>Bell, William J.</au><au>Qian, Haitao</au><au>Schneider, Patricia A.</au><au>MacArthur, Daniel H.</au><au>Emerich, Dwaine F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>27</volume><issue>19</issue><spage>3570</spage><epage>3579</epage><pages>3570-3579</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>16497374</pmid><doi>10.1016/j.biomaterials.2006.01.042</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2006-07, Vol.27 (19), p.3570-3579
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_67829035
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alginate
Alginates - chemistry
Alginates - pharmacokinetics
Animals
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacokinetics
Biodegradation
Capsules
Cell encapsulation
Drug Delivery Systems
Drug Stability
FTIR
Hydrogel
Magnetic Resonance Spectroscopy
Male
Materials Testing
Microscopy, Electron, Scanning
Molecular Structure
Peptides - chemistry
Peptides - pharmacokinetics
Peritoneal Cavity
Rats
Rats, Long-Evans
SEM
Spectroscopy, Fourier Transform Infrared
Surface Properties
title Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intraperitoneal%20stability%20of%20alginate%E2%80%93polyornithine%20microcapsules%20in%20rats:%20An%20FTIR%20and%20SEM%20analysis&rft.jtitle=Biomaterials&rft.au=Thanos,%20Christopher%20G.&rft.date=2006-07-01&rft.volume=27&rft.issue=19&rft.spage=3570&rft.epage=3579&rft.pages=3570-3579&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2006.01.042&rft_dat=%3Cproquest_cross%3E19447574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19447574&rft_id=info:pmid/16497374&rft_els_id=S0142961206001311&rfr_iscdi=true