Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis
Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the de...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2006-07, Vol.27 (19), p.3570-3579 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3579 |
---|---|
container_issue | 19 |
container_start_page | 3570 |
container_title | Biomaterials |
container_volume | 27 |
creator | Thanos, Christopher G. Bintz, Briannan E. Bell, William J. Qian, Haitao Schneider, Patricia A. MacArthur, Daniel H. Emerich, Dwaine F. |
description | Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources. |
doi_str_mv | 10.1016/j.biomaterials.2006.01.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67829035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961206001311</els_id><sourcerecordid>19447574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-853b64c1cff8b57c6a4e9ebdead57aae2bdd6890400526d928942b6aca1ad8513</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhFZDFgVuC7ThO3FtVWlipCAnK2ZrYE_AqcYLtRdob78Ab8iS42pXgVk6jkb6ZfzQfIa84qznj6s2uHvwyQ8boYUq1YEzVjNdMikdkw_uur1rN2sdkw7gUlVZcnJFnKe1Y6Qv0lJxxJXXXdHJDcBtyhLWsyktAmGjKMPjJ5wNdRgrTVx9K0O-fv9ZlOiwx-PzNB6Szt3GxsKb9hIn6QCPkdEEvA725236iEBz9fP2hVJgOyafn5MlYTsUXp3pOvtxc3129r24_vtteXd5WVkqWq75tBiUtt-PYD21nFUjUODgE13YAKAbnVK-ZZKwVymnRaykGBRY4uL7lzTl5fdy7xuX7HlM2s08WpwkCLvtkVNcLzZr2QVBoyZuuEQ-CXEvZtZ0s4MURLI9JKeJo1uhniAfDmbnXZnbmX23mXpth3BQjZfjlKWU_zOj-jp48FeDtEcDyvR8eo0nWY7DofESbjVv8_-T8AfAUsoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19447574</pqid></control><display><type>article</type><title>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Thanos, Christopher G. ; Bintz, Briannan E. ; Bell, William J. ; Qian, Haitao ; Schneider, Patricia A. ; MacArthur, Daniel H. ; Emerich, Dwaine F.</creator><creatorcontrib>Thanos, Christopher G. ; Bintz, Briannan E. ; Bell, William J. ; Qian, Haitao ; Schneider, Patricia A. ; MacArthur, Daniel H. ; Emerich, Dwaine F.</creatorcontrib><description>Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2006.01.042</identifier><identifier>PMID: 16497374</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alginate ; Alginates - chemistry ; Alginates - pharmacokinetics ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacokinetics ; Biodegradation ; Capsules ; Cell encapsulation ; Drug Delivery Systems ; Drug Stability ; FTIR ; Hydrogel ; Magnetic Resonance Spectroscopy ; Male ; Materials Testing ; Microscopy, Electron, Scanning ; Molecular Structure ; Peptides - chemistry ; Peptides - pharmacokinetics ; Peritoneal Cavity ; Rats ; Rats, Long-Evans ; SEM ; Spectroscopy, Fourier Transform Infrared ; Surface Properties</subject><ispartof>Biomaterials, 2006-07, Vol.27 (19), p.3570-3579</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-853b64c1cff8b57c6a4e9ebdead57aae2bdd6890400526d928942b6aca1ad8513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2006.01.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16497374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thanos, Christopher G.</creatorcontrib><creatorcontrib>Bintz, Briannan E.</creatorcontrib><creatorcontrib>Bell, William J.</creatorcontrib><creatorcontrib>Qian, Haitao</creatorcontrib><creatorcontrib>Schneider, Patricia A.</creatorcontrib><creatorcontrib>MacArthur, Daniel H.</creatorcontrib><creatorcontrib>Emerich, Dwaine F.</creatorcontrib><title>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources.</description><subject>Alginate</subject><subject>Alginates - chemistry</subject><subject>Alginates - pharmacokinetics</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacokinetics</subject><subject>Biodegradation</subject><subject>Capsules</subject><subject>Cell encapsulation</subject><subject>Drug Delivery Systems</subject><subject>Drug Stability</subject><subject>FTIR</subject><subject>Hydrogel</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molecular Structure</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacokinetics</subject><subject>Peritoneal Cavity</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>SEM</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EokvhFZDFgVuC7ThO3FtVWlipCAnK2ZrYE_AqcYLtRdob78Ab8iS42pXgVk6jkb6ZfzQfIa84qznj6s2uHvwyQ8boYUq1YEzVjNdMikdkw_uur1rN2sdkw7gUlVZcnJFnKe1Y6Qv0lJxxJXXXdHJDcBtyhLWsyktAmGjKMPjJ5wNdRgrTVx9K0O-fv9ZlOiwx-PzNB6Szt3GxsKb9hIn6QCPkdEEvA725236iEBz9fP2hVJgOyafn5MlYTsUXp3pOvtxc3129r24_vtteXd5WVkqWq75tBiUtt-PYD21nFUjUODgE13YAKAbnVK-ZZKwVymnRaykGBRY4uL7lzTl5fdy7xuX7HlM2s08WpwkCLvtkVNcLzZr2QVBoyZuuEQ-CXEvZtZ0s4MURLI9JKeJo1uhniAfDmbnXZnbmX23mXpth3BQjZfjlKWU_zOj-jp48FeDtEcDyvR8eo0nWY7DofESbjVv8_-T8AfAUsoE</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Thanos, Christopher G.</creator><creator>Bintz, Briannan E.</creator><creator>Bell, William J.</creator><creator>Qian, Haitao</creator><creator>Schneider, Patricia A.</creator><creator>MacArthur, Daniel H.</creator><creator>Emerich, Dwaine F.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</title><author>Thanos, Christopher G. ; Bintz, Briannan E. ; Bell, William J. ; Qian, Haitao ; Schneider, Patricia A. ; MacArthur, Daniel H. ; Emerich, Dwaine F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-853b64c1cff8b57c6a4e9ebdead57aae2bdd6890400526d928942b6aca1ad8513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alginate</topic><topic>Alginates - chemistry</topic><topic>Alginates - pharmacokinetics</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacokinetics</topic><topic>Biodegradation</topic><topic>Capsules</topic><topic>Cell encapsulation</topic><topic>Drug Delivery Systems</topic><topic>Drug Stability</topic><topic>FTIR</topic><topic>Hydrogel</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molecular Structure</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacokinetics</topic><topic>Peritoneal Cavity</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>SEM</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanos, Christopher G.</creatorcontrib><creatorcontrib>Bintz, Briannan E.</creatorcontrib><creatorcontrib>Bell, William J.</creatorcontrib><creatorcontrib>Qian, Haitao</creatorcontrib><creatorcontrib>Schneider, Patricia A.</creatorcontrib><creatorcontrib>MacArthur, Daniel H.</creatorcontrib><creatorcontrib>Emerich, Dwaine F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanos, Christopher G.</au><au>Bintz, Briannan E.</au><au>Bell, William J.</au><au>Qian, Haitao</au><au>Schneider, Patricia A.</au><au>MacArthur, Daniel H.</au><au>Emerich, Dwaine F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>27</volume><issue>19</issue><spage>3570</spage><epage>3579</epage><pages>3570-3579</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Alginate–polycation microcapsule systems have been used over decades as delivery vehicles for cell and protein therapy. These systems have been unpredictable across a range of indications with questions resulting around the inherent stability of the alginate polysaccharide and failure mode of the delivery system. The current study focuses on such a system using 5 different alginates, 2 of which are commercially purified, which are crosslinked by polyornithine. Capsules formed by frequency-generated droplet formation were studied in the peritoneal cavity of Long-Evans rats over the course of 3 months by morphometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy of the surface. Individual capsule components were also investigated on FTIR and a relative stability index was generated by titration for comparison to explanted samples over time. Using these techniques, a distinct degradation pattern was noted and is compared between the 5 alginate sources.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>16497374</pmid><doi>10.1016/j.biomaterials.2006.01.042</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2006-07, Vol.27 (19), p.3570-3579 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_67829035 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Alginate Alginates - chemistry Alginates - pharmacokinetics Animals Biocompatible Materials - chemistry Biocompatible Materials - pharmacokinetics Biodegradation Capsules Cell encapsulation Drug Delivery Systems Drug Stability FTIR Hydrogel Magnetic Resonance Spectroscopy Male Materials Testing Microscopy, Electron, Scanning Molecular Structure Peptides - chemistry Peptides - pharmacokinetics Peritoneal Cavity Rats Rats, Long-Evans SEM Spectroscopy, Fourier Transform Infrared Surface Properties |
title | Intraperitoneal stability of alginate–polyornithine microcapsules in rats: An FTIR and SEM analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intraperitoneal%20stability%20of%20alginate%E2%80%93polyornithine%20microcapsules%20in%20rats:%20An%20FTIR%20and%20SEM%20analysis&rft.jtitle=Biomaterials&rft.au=Thanos,%20Christopher%20G.&rft.date=2006-07-01&rft.volume=27&rft.issue=19&rft.spage=3570&rft.epage=3579&rft.pages=3570-3579&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2006.01.042&rft_dat=%3Cproquest_cross%3E19447574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19447574&rft_id=info:pmid/16497374&rft_els_id=S0142961206001311&rfr_iscdi=true |