Neuronal, Neurohormonal, and Autocrine Control of Xenopus Melanotrope Cell Activity

: Amphibian pituitary melanotropes are used to investigate principles of neuroendocrine translation of neural input into hormonal output. Here, the steps in this translation process are outlined for the melanotrope cell of Xenopus laevis, with attention to external stimuli, neurochemical messengers,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2005-04, Vol.1040 (1), p.172-183
Hauptverfasser: ROUBOS, ERIC W., SCHEENEN, WIM J. J. M., JENKS, BRUCE G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 172
container_title Annals of the New York Academy of Sciences
container_volume 1040
creator ROUBOS, ERIC W.
SCHEENEN, WIM J. J. M.
JENKS, BRUCE G.
description : Amphibian pituitary melanotropes are used to investigate principles of neuroendocrine translation of neural input into hormonal output. Here, the steps in this translation process are outlined for the melanotrope cell of Xenopus laevis, with attention to external stimuli, neurochemical messengers, receptor dynamics, second‐messenger pathways, and control of the melanotrope secretory process. Emphasis is on the pathways that neurochemical messengers follow to reach the melanotrope. The inhibitory messengers, dopamine, γ‐aminobutyric acid, and neuropeptide Y, act on the cells by synaptic input from the suprachiasmatic nucleus, whereas the locus coeruleus and raphe nucleus synaptically stimulate the cells via noradrenaline and serotonin, respectively. Autoexcitatory actions are exerted by acetylcholine, brain‐derived neurotrophic factor (BDNF), and the calcium‐sensing receptor. At least six messengers released from the pituitary neural lobe stimulate melanotropes in a neurohormonal way: corticotropin‐releasing hormone, thyrotropin‐releasing hormone, BDNF, urocortin, mesotocin, and vasotocin. They all are produced by the magnocellular nucleus and coexist in various combinations in two types of neurohemal axon terminal. Most of the relevant receptors of the melanotropes have been elucidated. Apparently, the neural lobe has a dominant role in activating melanotrope secretory activity. The intracellular mechanisms translating the various inputs into cellular activities like biosynthesis and secretion constitute the adenylyl cyclase‐cAMP pathway and Ca2+ in the form of periodic changes of the intracellular Ca2+ concentration, known as Ca2+ oscillations. It is proposed that the pattern of these oscillations encodes specific regulatory information and that it is set by first messengers that control, for example, via G proteins and cAMP‐related events, specific ion channel‐mediated events in the membrane of the melanotrope cell.
doi_str_mv 10.1196/annals.1327.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67824782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17337169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4752-66e1aa0b3f866c25216a14cd8ba3d787f23b0c6ca9a775b78b6b81161095e10d3</originalsourceid><addsrcrecordid>eNqFkc1P2zAYxi00NArbmduU08SBtH7txHaOpeJLCoWpm8a4WI7jaNnSuNgJ0P8el1Tsth4sf_2eR4_eB6FjwGOAjE1U26rGj4ESPsaE7KER8CSLGaPkAxphzHksMkIP0KH3fzAGIhL-ER1AKjII_Agt5qZ3NpicRm-n39Yth6tqy2jad1a7ujXRzLads01kq-jetHbV--jGNKq14XUVvk3TRFPd1U91t_6E9quQynze7kfox8X599lVnN9eXs-meawTnpIQ0oBSuKCVYEyTlABTkOhSFIqWXPCK0AJrplWmOE8LLgpWCAAGOEsN4JIeoa-D78rZx974Ti5rr0MS1Rrbe8m4IElYO0HglHJgWQBP_g-yhIQRJhnZjaZAUxyiblwnA6qd9d6ZSq5cvVRuLQHLTY1yqFFuapShlqD4sjXvi6Up__Hb3gKQDMBz3Zj1Lj85_zVdAN_I4kFW-868vMuU-xuGRXkqf84vJf6WP-R3Z_cyp6-5ebhJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513500959</pqid></control><display><type>article</type><title>Neuronal, Neurohormonal, and Autocrine Control of Xenopus Melanotrope Cell Activity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>ROUBOS, ERIC W. ; SCHEENEN, WIM J. J. M. ; JENKS, BRUCE G.</creator><creatorcontrib>ROUBOS, ERIC W. ; SCHEENEN, WIM J. J. M. ; JENKS, BRUCE G.</creatorcontrib><description>: Amphibian pituitary melanotropes are used to investigate principles of neuroendocrine translation of neural input into hormonal output. Here, the steps in this translation process are outlined for the melanotrope cell of Xenopus laevis, with attention to external stimuli, neurochemical messengers, receptor dynamics, second‐messenger pathways, and control of the melanotrope secretory process. Emphasis is on the pathways that neurochemical messengers follow to reach the melanotrope. The inhibitory messengers, dopamine, γ‐aminobutyric acid, and neuropeptide Y, act on the cells by synaptic input from the suprachiasmatic nucleus, whereas the locus coeruleus and raphe nucleus synaptically stimulate the cells via noradrenaline and serotonin, respectively. Autoexcitatory actions are exerted by acetylcholine, brain‐derived neurotrophic factor (BDNF), and the calcium‐sensing receptor. At least six messengers released from the pituitary neural lobe stimulate melanotropes in a neurohormonal way: corticotropin‐releasing hormone, thyrotropin‐releasing hormone, BDNF, urocortin, mesotocin, and vasotocin. They all are produced by the magnocellular nucleus and coexist in various combinations in two types of neurohemal axon terminal. Most of the relevant receptors of the melanotropes have been elucidated. Apparently, the neural lobe has a dominant role in activating melanotrope secretory activity. The intracellular mechanisms translating the various inputs into cellular activities like biosynthesis and secretion constitute the adenylyl cyclase‐cAMP pathway and Ca2+ in the form of periodic changes of the intracellular Ca2+ concentration, known as Ca2+ oscillations. It is proposed that the pattern of these oscillations encodes specific regulatory information and that it is set by first messengers that control, for example, via G proteins and cAMP‐related events, specific ion channel‐mediated events in the membrane of the melanotrope cell.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1196/annals.1327.022</identifier><identifier>PMID: 15891022</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Autocrine Communication - physiology ; BDNF ; Freshwater ; Hormones ; Lobes ; melanotrope cells ; neurohormone ; Neurons - metabolism ; Neurons - secretion ; Neurotransmitter Agents - metabolism ; Neurotransmitter Agents - secretion ; Nuclei ; Oscillations ; Pathways ; Pituitary Gland - cytology ; Pituitary Gland - metabolism ; Pituitary Gland - secretion ; Receptors ; Secretions ; Signal Transduction - physiology ; Translations ; urocortin ; Xenopus laevis ; Xenopus laevis - metabolism</subject><ispartof>Annals of the New York Academy of Sciences, 2005-04, Vol.1040 (1), p.172-183</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4752-66e1aa0b3f866c25216a14cd8ba3d787f23b0c6ca9a775b78b6b81161095e10d3</citedby><cites>FETCH-LOGICAL-c4752-66e1aa0b3f866c25216a14cd8ba3d787f23b0c6ca9a775b78b6b81161095e10d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1196%2Fannals.1327.022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1196%2Fannals.1327.022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15891022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ROUBOS, ERIC W.</creatorcontrib><creatorcontrib>SCHEENEN, WIM J. J. M.</creatorcontrib><creatorcontrib>JENKS, BRUCE G.</creatorcontrib><title>Neuronal, Neurohormonal, and Autocrine Control of Xenopus Melanotrope Cell Activity</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>: Amphibian pituitary melanotropes are used to investigate principles of neuroendocrine translation of neural input into hormonal output. Here, the steps in this translation process are outlined for the melanotrope cell of Xenopus laevis, with attention to external stimuli, neurochemical messengers, receptor dynamics, second‐messenger pathways, and control of the melanotrope secretory process. Emphasis is on the pathways that neurochemical messengers follow to reach the melanotrope. The inhibitory messengers, dopamine, γ‐aminobutyric acid, and neuropeptide Y, act on the cells by synaptic input from the suprachiasmatic nucleus, whereas the locus coeruleus and raphe nucleus synaptically stimulate the cells via noradrenaline and serotonin, respectively. Autoexcitatory actions are exerted by acetylcholine, brain‐derived neurotrophic factor (BDNF), and the calcium‐sensing receptor. At least six messengers released from the pituitary neural lobe stimulate melanotropes in a neurohormonal way: corticotropin‐releasing hormone, thyrotropin‐releasing hormone, BDNF, urocortin, mesotocin, and vasotocin. They all are produced by the magnocellular nucleus and coexist in various combinations in two types of neurohemal axon terminal. Most of the relevant receptors of the melanotropes have been elucidated. Apparently, the neural lobe has a dominant role in activating melanotrope secretory activity. The intracellular mechanisms translating the various inputs into cellular activities like biosynthesis and secretion constitute the adenylyl cyclase‐cAMP pathway and Ca2+ in the form of periodic changes of the intracellular Ca2+ concentration, known as Ca2+ oscillations. It is proposed that the pattern of these oscillations encodes specific regulatory information and that it is set by first messengers that control, for example, via G proteins and cAMP‐related events, specific ion channel‐mediated events in the membrane of the melanotrope cell.</description><subject>Animals</subject><subject>Autocrine Communication - physiology</subject><subject>BDNF</subject><subject>Freshwater</subject><subject>Hormones</subject><subject>Lobes</subject><subject>melanotrope cells</subject><subject>neurohormone</subject><subject>Neurons - metabolism</subject><subject>Neurons - secretion</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitter Agents - secretion</subject><subject>Nuclei</subject><subject>Oscillations</subject><subject>Pathways</subject><subject>Pituitary Gland - cytology</subject><subject>Pituitary Gland - metabolism</subject><subject>Pituitary Gland - secretion</subject><subject>Receptors</subject><subject>Secretions</subject><subject>Signal Transduction - physiology</subject><subject>Translations</subject><subject>urocortin</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - metabolism</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1P2zAYxi00NArbmduU08SBtH7txHaOpeJLCoWpm8a4WI7jaNnSuNgJ0P8el1Tsth4sf_2eR4_eB6FjwGOAjE1U26rGj4ESPsaE7KER8CSLGaPkAxphzHksMkIP0KH3fzAGIhL-ER1AKjII_Agt5qZ3NpicRm-n39Yth6tqy2jad1a7ujXRzLads01kq-jetHbV--jGNKq14XUVvk3TRFPd1U91t_6E9quQynze7kfox8X599lVnN9eXs-meawTnpIQ0oBSuKCVYEyTlABTkOhSFIqWXPCK0AJrplWmOE8LLgpWCAAGOEsN4JIeoa-D78rZx974Ti5rr0MS1Rrbe8m4IElYO0HglHJgWQBP_g-yhIQRJhnZjaZAUxyiblwnA6qd9d6ZSq5cvVRuLQHLTY1yqFFuapShlqD4sjXvi6Up__Hb3gKQDMBz3Zj1Lj85_zVdAN_I4kFW-868vMuU-xuGRXkqf84vJf6WP-R3Z_cyp6-5ebhJ</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>ROUBOS, ERIC W.</creator><creator>SCHEENEN, WIM J. J. M.</creator><creator>JENKS, BRUCE G.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QP</scope><scope>7X8</scope></search><sort><creationdate>200504</creationdate><title>Neuronal, Neurohormonal, and Autocrine Control of Xenopus Melanotrope Cell Activity</title><author>ROUBOS, ERIC W. ; SCHEENEN, WIM J. J. M. ; JENKS, BRUCE G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4752-66e1aa0b3f866c25216a14cd8ba3d787f23b0c6ca9a775b78b6b81161095e10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Autocrine Communication - physiology</topic><topic>BDNF</topic><topic>Freshwater</topic><topic>Hormones</topic><topic>Lobes</topic><topic>melanotrope cells</topic><topic>neurohormone</topic><topic>Neurons - metabolism</topic><topic>Neurons - secretion</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitter Agents - secretion</topic><topic>Nuclei</topic><topic>Oscillations</topic><topic>Pathways</topic><topic>Pituitary Gland - cytology</topic><topic>Pituitary Gland - metabolism</topic><topic>Pituitary Gland - secretion</topic><topic>Receptors</topic><topic>Secretions</topic><topic>Signal Transduction - physiology</topic><topic>Translations</topic><topic>urocortin</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROUBOS, ERIC W.</creatorcontrib><creatorcontrib>SCHEENEN, WIM J. J. M.</creatorcontrib><creatorcontrib>JENKS, BRUCE G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROUBOS, ERIC W.</au><au>SCHEENEN, WIM J. J. M.</au><au>JENKS, BRUCE G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuronal, Neurohormonal, and Autocrine Control of Xenopus Melanotrope Cell Activity</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2005-04</date><risdate>2005</risdate><volume>1040</volume><issue>1</issue><spage>172</spage><epage>183</epage><pages>172-183</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>: Amphibian pituitary melanotropes are used to investigate principles of neuroendocrine translation of neural input into hormonal output. Here, the steps in this translation process are outlined for the melanotrope cell of Xenopus laevis, with attention to external stimuli, neurochemical messengers, receptor dynamics, second‐messenger pathways, and control of the melanotrope secretory process. Emphasis is on the pathways that neurochemical messengers follow to reach the melanotrope. The inhibitory messengers, dopamine, γ‐aminobutyric acid, and neuropeptide Y, act on the cells by synaptic input from the suprachiasmatic nucleus, whereas the locus coeruleus and raphe nucleus synaptically stimulate the cells via noradrenaline and serotonin, respectively. Autoexcitatory actions are exerted by acetylcholine, brain‐derived neurotrophic factor (BDNF), and the calcium‐sensing receptor. At least six messengers released from the pituitary neural lobe stimulate melanotropes in a neurohormonal way: corticotropin‐releasing hormone, thyrotropin‐releasing hormone, BDNF, urocortin, mesotocin, and vasotocin. They all are produced by the magnocellular nucleus and coexist in various combinations in two types of neurohemal axon terminal. Most of the relevant receptors of the melanotropes have been elucidated. Apparently, the neural lobe has a dominant role in activating melanotrope secretory activity. The intracellular mechanisms translating the various inputs into cellular activities like biosynthesis and secretion constitute the adenylyl cyclase‐cAMP pathway and Ca2+ in the form of periodic changes of the intracellular Ca2+ concentration, known as Ca2+ oscillations. It is proposed that the pattern of these oscillations encodes specific regulatory information and that it is set by first messengers that control, for example, via G proteins and cAMP‐related events, specific ion channel‐mediated events in the membrane of the melanotrope cell.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15891022</pmid><doi>10.1196/annals.1327.022</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2005-04, Vol.1040 (1), p.172-183
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_67824782
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Autocrine Communication - physiology
BDNF
Freshwater
Hormones
Lobes
melanotrope cells
neurohormone
Neurons - metabolism
Neurons - secretion
Neurotransmitter Agents - metabolism
Neurotransmitter Agents - secretion
Nuclei
Oscillations
Pathways
Pituitary Gland - cytology
Pituitary Gland - metabolism
Pituitary Gland - secretion
Receptors
Secretions
Signal Transduction - physiology
Translations
urocortin
Xenopus laevis
Xenopus laevis - metabolism
title Neuronal, Neurohormonal, and Autocrine Control of Xenopus Melanotrope Cell Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuronal,%20Neurohormonal,%20and%20Autocrine%20Control%20of%20Xenopus%20Melanotrope%20Cell%20Activity&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=ROUBOS,%20ERIC%20W.&rft.date=2005-04&rft.volume=1040&rft.issue=1&rft.spage=172&rft.epage=183&rft.pages=172-183&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1196/annals.1327.022&rft_dat=%3Cproquest_cross%3E17337169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513500959&rft_id=info:pmid/15891022&rfr_iscdi=true