Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model
Neurodevelopmental impairments after repair of congenital heart disease with cardiopulmonary bypass and deep hypothermic circulatory arrest continue to affect the lives of children. To date, the preclinical investigation of cerebral injury mechanisms related to deep hypothermic circulatory arrest ha...
Gespeichert in:
Veröffentlicht in: | The Journal of thoracic and cardiovascular surgery 2006-04, Vol.131 (4), p.805-812 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812 |
---|---|
container_issue | 4 |
container_start_page | 805 |
container_title | The Journal of thoracic and cardiovascular surgery |
container_volume | 131 |
creator | Jungwirth, Bettina Mackensen, G. Burkhard Blobner, Manfred Neff, Frauke Reichart, Bruno Kochs, Eberhard F. Nollert, Georg |
description | Neurodevelopmental impairments after repair of congenital heart disease with cardiopulmonary bypass and deep hypothermic circulatory arrest continue to affect the lives of children. To date, the preclinical investigation of cerebral injury mechanisms related to deep hypothermic circulatory arrest has been restricted to expensive, personnel-demanding, and cumbersome large-animal models without validated neuropsychologic assessment. We aimed to establish a rodent recovery model of deep hypothermic circulatory arrest to overcome these disadvantages.
Male rats (n = 34) were cannulated for cardiopulmonary bypass, cooled to a rectal temperature of 16°C to 18°C within 30 minutes, and assigned to deep hypothermic circulatory arrest durations of 0, 45, 60, 75, 90 (n = 6, respectively), or 105 (n = 4) minutes. After rewarming within 40 minutes, animals were weaned from cardiopulmonary bypass at 35.5°C. Neurologic and cognitive performance was assessed with the modified hole board test until postoperative day 14. Thereafter, brains were perfusion fixed and histologically analyzed.
Logistic regression analyses identified dose-dependent associations between survival, neurologic or cognitive function, and duration of deep hypothermic circulatory arrest. Functional and histologic deficits were detectable after clinically relevant deep hypothermic circulatory arrest durations. The overall neurologic function did not correlate with histologic outcome (
r = 0.51,
P > .05).
The current study presents a novel recovery model of cardiopulmonary bypass with deep hypothermic circulatory arrest in the rat. In contrast to studies in large animals, even clinically relevant deep hypothermic circulatory arrest durations up to 60 minutes resulted in detectable deficits. Consequently, this experimental model appears to be suitable to further elucidate the mechanisms associated with adverse cerebral outcome after cardiac surgery and deep hypothermic circulatory arrest and to investigate potential neuroprotective strategies. |
doi_str_mv | 10.1016/j.jtcvs.2005.11.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67816479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022522305019239</els_id><sourcerecordid>67816479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-7c919e19f008b9d3e0126ec6f77da0bb7d3e4e228265e37c582996a95b9885063</originalsourceid><addsrcrecordid>eNp9kM-L1DAYhoMo7rj6FwiSi3rq-CVtk0bwIOv6Axa9KHgLafp1m6FtapLuMOAfb2ZnYG-eAuF537x5CHnJYMuAiXe77S7Zu7jlAPWWsS0w-YhsGChZiKb-_ZhsADgvas7LC_Isxh0ASGDqKblgom6gKpsN-fsd1-BHf-ss9WuyfkJq-oSBWhM655d1nPxswoG2h8XESPcuDbRDXOhwWHwaMEw5al2w62iSz6AJAWOibqbBpPiefsJog1uS8zP1PTV0xj2dfIfjc_KkN2PEF-fzkvz6fP3z6mtx8-PLt6uPN4WtRJUKaRVTyFQP0LSqKxEYF2hFL2VnoG1lvqqQ84aLGktp64YrJYyqW9U0NYjykrw59S7B_1nzOD25aHEczYx-jVrIholKqgyWJ9AGH2PAXi_BTfn3moE-Stc7fS9dH6VrxnSWnlOvzvVrO2H3kDlbzsDrM2CiNWMfzGxdfOCk5FBVx51vT9zgboe9C6jjZMYx17Ljs5GVTFe6gTqTH04kZm13DoOO1uFsscspm3Tn3X8n_wOMr7Do</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67816479</pqid></control><display><type>article</type><title>Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jungwirth, Bettina ; Mackensen, G. Burkhard ; Blobner, Manfred ; Neff, Frauke ; Reichart, Bruno ; Kochs, Eberhard F. ; Nollert, Georg</creator><creatorcontrib>Jungwirth, Bettina ; Mackensen, G. Burkhard ; Blobner, Manfred ; Neff, Frauke ; Reichart, Bruno ; Kochs, Eberhard F. ; Nollert, Georg</creatorcontrib><description>Neurodevelopmental impairments after repair of congenital heart disease with cardiopulmonary bypass and deep hypothermic circulatory arrest continue to affect the lives of children. To date, the preclinical investigation of cerebral injury mechanisms related to deep hypothermic circulatory arrest has been restricted to expensive, personnel-demanding, and cumbersome large-animal models without validated neuropsychologic assessment. We aimed to establish a rodent recovery model of deep hypothermic circulatory arrest to overcome these disadvantages.
Male rats (n = 34) were cannulated for cardiopulmonary bypass, cooled to a rectal temperature of 16°C to 18°C within 30 minutes, and assigned to deep hypothermic circulatory arrest durations of 0, 45, 60, 75, 90 (n = 6, respectively), or 105 (n = 4) minutes. After rewarming within 40 minutes, animals were weaned from cardiopulmonary bypass at 35.5°C. Neurologic and cognitive performance was assessed with the modified hole board test until postoperative day 14. Thereafter, brains were perfusion fixed and histologically analyzed.
Logistic regression analyses identified dose-dependent associations between survival, neurologic or cognitive function, and duration of deep hypothermic circulatory arrest. Functional and histologic deficits were detectable after clinically relevant deep hypothermic circulatory arrest durations. The overall neurologic function did not correlate with histologic outcome (
r = 0.51,
P > .05).
The current study presents a novel recovery model of cardiopulmonary bypass with deep hypothermic circulatory arrest in the rat. In contrast to studies in large animals, even clinically relevant deep hypothermic circulatory arrest durations up to 60 minutes resulted in detectable deficits. Consequently, this experimental model appears to be suitable to further elucidate the mechanisms associated with adverse cerebral outcome after cardiac surgery and deep hypothermic circulatory arrest and to investigate potential neuroprotective strategies.</description><identifier>ISSN: 0022-5223</identifier><identifier>EISSN: 1097-685X</identifier><identifier>DOI: 10.1016/j.jtcvs.2005.11.017</identifier><identifier>PMID: 16580438</identifier><identifier>CODEN: JTCSAQ</identifier><language>eng</language><publisher>Philadelphia, PA: Mosby, Inc</publisher><subject>Animals ; Biological and medical sciences ; Brain - pathology ; Cardiopulmonary Bypass ; Cerebellum - pathology ; Cognition ; Cognition Disorders - pathology ; Disease Models, Animal ; Hippocampus - pathology ; Hypothermia, Induced ; Logistic Models ; Male ; Medical sciences ; Motor Skills ; Purkinje Cells - pathology ; Rats ; Rats, Sprague-Dawley ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgery of the heart ; Time Factors</subject><ispartof>The Journal of thoracic and cardiovascular surgery, 2006-04, Vol.131 (4), p.805-812</ispartof><rights>2006 The American Association for Thoracic Surgery</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-7c919e19f008b9d3e0126ec6f77da0bb7d3e4e228265e37c582996a95b9885063</citedby><cites>FETCH-LOGICAL-c464t-7c919e19f008b9d3e0126ec6f77da0bb7d3e4e228265e37c582996a95b9885063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtcvs.2005.11.017$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17720446$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16580438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jungwirth, Bettina</creatorcontrib><creatorcontrib>Mackensen, G. Burkhard</creatorcontrib><creatorcontrib>Blobner, Manfred</creatorcontrib><creatorcontrib>Neff, Frauke</creatorcontrib><creatorcontrib>Reichart, Bruno</creatorcontrib><creatorcontrib>Kochs, Eberhard F.</creatorcontrib><creatorcontrib>Nollert, Georg</creatorcontrib><title>Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model</title><title>The Journal of thoracic and cardiovascular surgery</title><addtitle>J Thorac Cardiovasc Surg</addtitle><description>Neurodevelopmental impairments after repair of congenital heart disease with cardiopulmonary bypass and deep hypothermic circulatory arrest continue to affect the lives of children. To date, the preclinical investigation of cerebral injury mechanisms related to deep hypothermic circulatory arrest has been restricted to expensive, personnel-demanding, and cumbersome large-animal models without validated neuropsychologic assessment. We aimed to establish a rodent recovery model of deep hypothermic circulatory arrest to overcome these disadvantages.
Male rats (n = 34) were cannulated for cardiopulmonary bypass, cooled to a rectal temperature of 16°C to 18°C within 30 minutes, and assigned to deep hypothermic circulatory arrest durations of 0, 45, 60, 75, 90 (n = 6, respectively), or 105 (n = 4) minutes. After rewarming within 40 minutes, animals were weaned from cardiopulmonary bypass at 35.5°C. Neurologic and cognitive performance was assessed with the modified hole board test until postoperative day 14. Thereafter, brains were perfusion fixed and histologically analyzed.
Logistic regression analyses identified dose-dependent associations between survival, neurologic or cognitive function, and duration of deep hypothermic circulatory arrest. Functional and histologic deficits were detectable after clinically relevant deep hypothermic circulatory arrest durations. The overall neurologic function did not correlate with histologic outcome (
r = 0.51,
P > .05).
The current study presents a novel recovery model of cardiopulmonary bypass with deep hypothermic circulatory arrest in the rat. In contrast to studies in large animals, even clinically relevant deep hypothermic circulatory arrest durations up to 60 minutes resulted in detectable deficits. Consequently, this experimental model appears to be suitable to further elucidate the mechanisms associated with adverse cerebral outcome after cardiac surgery and deep hypothermic circulatory arrest and to investigate potential neuroprotective strategies.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain - pathology</subject><subject>Cardiopulmonary Bypass</subject><subject>Cerebellum - pathology</subject><subject>Cognition</subject><subject>Cognition Disorders - pathology</subject><subject>Disease Models, Animal</subject><subject>Hippocampus - pathology</subject><subject>Hypothermia, Induced</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Motor Skills</subject><subject>Purkinje Cells - pathology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgery of the heart</subject><subject>Time Factors</subject><issn>0022-5223</issn><issn>1097-685X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM-L1DAYhoMo7rj6FwiSi3rq-CVtk0bwIOv6Axa9KHgLafp1m6FtapLuMOAfb2ZnYG-eAuF537x5CHnJYMuAiXe77S7Zu7jlAPWWsS0w-YhsGChZiKb-_ZhsADgvas7LC_Isxh0ASGDqKblgom6gKpsN-fsd1-BHf-ss9WuyfkJq-oSBWhM655d1nPxswoG2h8XESPcuDbRDXOhwWHwaMEw5al2w62iSz6AJAWOibqbBpPiefsJog1uS8zP1PTV0xj2dfIfjc_KkN2PEF-fzkvz6fP3z6mtx8-PLt6uPN4WtRJUKaRVTyFQP0LSqKxEYF2hFL2VnoG1lvqqQ84aLGktp64YrJYyqW9U0NYjykrw59S7B_1nzOD25aHEczYx-jVrIholKqgyWJ9AGH2PAXi_BTfn3moE-Stc7fS9dH6VrxnSWnlOvzvVrO2H3kDlbzsDrM2CiNWMfzGxdfOCk5FBVx51vT9zgboe9C6jjZMYx17Ljs5GVTFe6gTqTH04kZm13DoOO1uFsscspm3Tn3X8n_wOMr7Do</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Jungwirth, Bettina</creator><creator>Mackensen, G. Burkhard</creator><creator>Blobner, Manfred</creator><creator>Neff, Frauke</creator><creator>Reichart, Bruno</creator><creator>Kochs, Eberhard F.</creator><creator>Nollert, Georg</creator><general>Mosby, Inc</general><general>AATS/WTSA</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060401</creationdate><title>Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model</title><author>Jungwirth, Bettina ; Mackensen, G. Burkhard ; Blobner, Manfred ; Neff, Frauke ; Reichart, Bruno ; Kochs, Eberhard F. ; Nollert, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-7c919e19f008b9d3e0126ec6f77da0bb7d3e4e228265e37c582996a95b9885063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain - pathology</topic><topic>Cardiopulmonary Bypass</topic><topic>Cerebellum - pathology</topic><topic>Cognition</topic><topic>Cognition Disorders - pathology</topic><topic>Disease Models, Animal</topic><topic>Hippocampus - pathology</topic><topic>Hypothermia, Induced</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Motor Skills</topic><topic>Purkinje Cells - pathology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgery of the heart</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jungwirth, Bettina</creatorcontrib><creatorcontrib>Mackensen, G. Burkhard</creatorcontrib><creatorcontrib>Blobner, Manfred</creatorcontrib><creatorcontrib>Neff, Frauke</creatorcontrib><creatorcontrib>Reichart, Bruno</creatorcontrib><creatorcontrib>Kochs, Eberhard F.</creatorcontrib><creatorcontrib>Nollert, Georg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jungwirth, Bettina</au><au>Mackensen, G. Burkhard</au><au>Blobner, Manfred</au><au>Neff, Frauke</au><au>Reichart, Bruno</au><au>Kochs, Eberhard F.</au><au>Nollert, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model</atitle><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle><addtitle>J Thorac Cardiovasc Surg</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>131</volume><issue>4</issue><spage>805</spage><epage>812</epage><pages>805-812</pages><issn>0022-5223</issn><eissn>1097-685X</eissn><coden>JTCSAQ</coden><abstract>Neurodevelopmental impairments after repair of congenital heart disease with cardiopulmonary bypass and deep hypothermic circulatory arrest continue to affect the lives of children. To date, the preclinical investigation of cerebral injury mechanisms related to deep hypothermic circulatory arrest has been restricted to expensive, personnel-demanding, and cumbersome large-animal models without validated neuropsychologic assessment. We aimed to establish a rodent recovery model of deep hypothermic circulatory arrest to overcome these disadvantages.
Male rats (n = 34) were cannulated for cardiopulmonary bypass, cooled to a rectal temperature of 16°C to 18°C within 30 minutes, and assigned to deep hypothermic circulatory arrest durations of 0, 45, 60, 75, 90 (n = 6, respectively), or 105 (n = 4) minutes. After rewarming within 40 minutes, animals were weaned from cardiopulmonary bypass at 35.5°C. Neurologic and cognitive performance was assessed with the modified hole board test until postoperative day 14. Thereafter, brains were perfusion fixed and histologically analyzed.
Logistic regression analyses identified dose-dependent associations between survival, neurologic or cognitive function, and duration of deep hypothermic circulatory arrest. Functional and histologic deficits were detectable after clinically relevant deep hypothermic circulatory arrest durations. The overall neurologic function did not correlate with histologic outcome (
r = 0.51,
P > .05).
The current study presents a novel recovery model of cardiopulmonary bypass with deep hypothermic circulatory arrest in the rat. In contrast to studies in large animals, even clinically relevant deep hypothermic circulatory arrest durations up to 60 minutes resulted in detectable deficits. Consequently, this experimental model appears to be suitable to further elucidate the mechanisms associated with adverse cerebral outcome after cardiac surgery and deep hypothermic circulatory arrest and to investigate potential neuroprotective strategies.</abstract><cop>Philadelphia, PA</cop><pub>Mosby, Inc</pub><pmid>16580438</pmid><doi>10.1016/j.jtcvs.2005.11.017</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5223 |
ispartof | The Journal of thoracic and cardiovascular surgery, 2006-04, Vol.131 (4), p.805-812 |
issn | 0022-5223 1097-685X |
language | eng |
recordid | cdi_proquest_miscellaneous_67816479 |
source | MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Animals Biological and medical sciences Brain - pathology Cardiopulmonary Bypass Cerebellum - pathology Cognition Cognition Disorders - pathology Disease Models, Animal Hippocampus - pathology Hypothermia, Induced Logistic Models Male Medical sciences Motor Skills Purkinje Cells - pathology Rats Rats, Sprague-Dawley Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgery of the heart Time Factors |
title | Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurologic%20outcome%20after%20cardiopulmonary%20bypass%20with%20deep%20hypothermic%20circulatory%20arrest%20in%20rats:%20Description%20of%20a%20new%20model&rft.jtitle=The%20Journal%20of%20thoracic%20and%20cardiovascular%20surgery&rft.au=Jungwirth,%20Bettina&rft.date=2006-04-01&rft.volume=131&rft.issue=4&rft.spage=805&rft.epage=812&rft.pages=805-812&rft.issn=0022-5223&rft.eissn=1097-685X&rft.coden=JTCSAQ&rft_id=info:doi/10.1016/j.jtcvs.2005.11.017&rft_dat=%3Cproquest_cross%3E67816479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67816479&rft_id=info:pmid/16580438&rft_els_id=S0022522305019239&rfr_iscdi=true |