Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)
The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-05, Vol.102 (19), p.6704-6708 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6708 |
---|---|
container_issue | 19 |
container_start_page | 6704 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Asthagiri, D. Pratt, L. R. Kress, J. D. Berne, Bruce J. |
description | The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5
+as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed. |
doi_str_mv | 10.1073/pnas.0408071102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67815984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375418</jstor_id><sourcerecordid>3375418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KVBbomQsCnxAIBcax449LK0T5kkBV1fZsOY5TjLzxbpxU3X9fr3bFlgunkWaeeWf0IHRA4IKAoJezzqQLYCBBEALlBzQhoEjBmYItNAEoRSFZyXbQbkovAKAqCR_RDqkkJZWCCfpyVWPf-cFH_BSDs2MwPf666MzU24RN1-Dvo0nePrvcMAH_GMZmgWOL789PsZmf7aPt1oTkPq3rHvp1e_Pz-r54_Hb3cH31WFjG1VCopmGtpbzhjnLOoRLGOisYE0SRqiS1bKFkqm5tJZgUIAUVTV2qpmWy5gB0D31e5c7Geuoa67qhN0HPej81_UJH4_XbSeef9e_4R2ctIFiZA07WAX2cjy4NeuqTdSGYzsUxaS5kNiJZBi9XoO1jSr1rX48Q0Evpeildb6TnjaP_f9vwa8sZOF0Dy81NXKmJyoeB6XYMYXB_h4wev49m4nBFvKQh9q8IpaJiRNJ_qYWduQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67815984</pqid></control><display><type>article</type><title>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Asthagiri, D. ; Pratt, L. R. ; Kress, J. D. ; Berne, Bruce J.</creator><creatorcontrib>Asthagiri, D. ; Pratt, L. R. ; Kress, J. D. ; Berne, Bruce J.</creatorcontrib><description>The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5
+as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0408071102</identifier><identifier>PMID: 15831590</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Approximation ; Atoms ; Biophysical Phenomena ; Biophysics ; Cations ; Chemical Theory and Computation Special Feature ; Chemistry - methods ; Computer Simulation ; Dielectric materials ; Electrons ; Free energy ; Ions ; Ligands ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Molecular dynamics ; Molecular Structure ; Molecular theory ; Molecules ; Oxygen ; Oxygen - chemistry ; Physical Sciences ; Protein Conformation ; Protons ; Solvents ; Static Electricity ; Thermodynamics ; Time Factors ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-05, Vol.102 (19), p.6704-6708</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</citedby><cites>FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375418$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375418$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15831590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asthagiri, D.</creatorcontrib><creatorcontrib>Pratt, L. R.</creatorcontrib><creatorcontrib>Kress, J. D.</creatorcontrib><creatorcontrib>Berne, Bruce J.</creatorcontrib><title>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5
+as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.</description><subject>Approximation</subject><subject>Atoms</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cations</subject><subject>Chemical Theory and Computation Special Feature</subject><subject>Chemistry - methods</subject><subject>Computer Simulation</subject><subject>Dielectric materials</subject><subject>Electrons</subject><subject>Free energy</subject><subject>Ions</subject><subject>Ligands</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular dynamics</subject><subject>Molecular Structure</subject><subject>Molecular theory</subject><subject>Molecules</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Physical Sciences</subject><subject>Protein Conformation</subject><subject>Protons</subject><subject>Solvents</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq0KVBbomQsCnxAIBcax449LK0T5kkBV1fZsOY5TjLzxbpxU3X9fr3bFlgunkWaeeWf0IHRA4IKAoJezzqQLYCBBEALlBzQhoEjBmYItNAEoRSFZyXbQbkovAKAqCR_RDqkkJZWCCfpyVWPf-cFH_BSDs2MwPf666MzU24RN1-Dvo0nePrvcMAH_GMZmgWOL789PsZmf7aPt1oTkPq3rHvp1e_Pz-r54_Hb3cH31WFjG1VCopmGtpbzhjnLOoRLGOisYE0SRqiS1bKFkqm5tJZgUIAUVTV2qpmWy5gB0D31e5c7Geuoa67qhN0HPej81_UJH4_XbSeef9e_4R2ctIFiZA07WAX2cjy4NeuqTdSGYzsUxaS5kNiJZBi9XoO1jSr1rX48Q0Evpeildb6TnjaP_f9vwa8sZOF0Dy81NXKmJyoeB6XYMYXB_h4wev49m4nBFvKQh9q8IpaJiRNJ_qYWduQ</recordid><startdate>20050510</startdate><enddate>20050510</enddate><creator>Asthagiri, D.</creator><creator>Pratt, L. R.</creator><creator>Kress, J. D.</creator><creator>Berne, Bruce J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050510</creationdate><title>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</title><author>Asthagiri, D. ; Pratt, L. R. ; Kress, J. D. ; Berne, Bruce J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Atoms</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cations</topic><topic>Chemical Theory and Computation Special Feature</topic><topic>Chemistry - methods</topic><topic>Computer Simulation</topic><topic>Dielectric materials</topic><topic>Electrons</topic><topic>Free energy</topic><topic>Ions</topic><topic>Ligands</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular dynamics</topic><topic>Molecular Structure</topic><topic>Molecular theory</topic><topic>Molecules</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Physical Sciences</topic><topic>Protein Conformation</topic><topic>Protons</topic><topic>Solvents</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asthagiri, D.</creatorcontrib><creatorcontrib>Pratt, L. R.</creatorcontrib><creatorcontrib>Kress, J. D.</creatorcontrib><creatorcontrib>Berne, Bruce J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asthagiri, D.</au><au>Pratt, L. R.</au><au>Kress, J. D.</au><au>Berne, Bruce J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-05-10</date><risdate>2005</risdate><volume>102</volume><issue>19</issue><spage>6704</spage><epage>6708</epage><pages>6704-6708</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5
+as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15831590</pmid><doi>10.1073/pnas.0408071102</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-05, Vol.102 (19), p.6704-6708 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_67815984 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Approximation Atoms Biophysical Phenomena Biophysics Cations Chemical Theory and Computation Special Feature Chemistry - methods Computer Simulation Dielectric materials Electrons Free energy Ions Ligands Models, Chemical Models, Molecular Molecular Conformation Molecular dynamics Molecular Structure Molecular theory Molecules Oxygen Oxygen - chemistry Physical Sciences Protein Conformation Protons Solvents Static Electricity Thermodynamics Time Factors Water - chemistry |
title | Ab initio Molecular Dynamics and Quasichemical Study of H+( aq) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20Molecular%20Dynamics%20and%20Quasichemical%20Study%20of%20H+(%20aq)&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Asthagiri,%20D.&rft.date=2005-05-10&rft.volume=102&rft.issue=19&rft.spage=6704&rft.epage=6708&rft.pages=6704-6708&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0408071102&rft_dat=%3Cjstor_proqu%3E3375418%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67815984&rft_id=info:pmid/15831590&rft_jstor_id=3375418&rfr_iscdi=true |