Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)

The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-05, Vol.102 (19), p.6704-6708
Hauptverfasser: Asthagiri, D., Pratt, L. R., Kress, J. D., Berne, Bruce J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6708
container_issue 19
container_start_page 6704
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Asthagiri, D.
Pratt, L. R.
Kress, J. D.
Berne, Bruce J.
description The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5 +as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.
doi_str_mv 10.1073/pnas.0408071102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67815984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375418</jstor_id><sourcerecordid>3375418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KVBbomQsCnxAIBcax449LK0T5kkBV1fZsOY5TjLzxbpxU3X9fr3bFlgunkWaeeWf0IHRA4IKAoJezzqQLYCBBEALlBzQhoEjBmYItNAEoRSFZyXbQbkovAKAqCR_RDqkkJZWCCfpyVWPf-cFH_BSDs2MwPf666MzU24RN1-Dvo0nePrvcMAH_GMZmgWOL789PsZmf7aPt1oTkPq3rHvp1e_Pz-r54_Hb3cH31WFjG1VCopmGtpbzhjnLOoRLGOisYE0SRqiS1bKFkqm5tJZgUIAUVTV2qpmWy5gB0D31e5c7Geuoa67qhN0HPej81_UJH4_XbSeef9e_4R2ctIFiZA07WAX2cjy4NeuqTdSGYzsUxaS5kNiJZBi9XoO1jSr1rX48Q0Evpeildb6TnjaP_f9vwa8sZOF0Dy81NXKmJyoeB6XYMYXB_h4wev49m4nBFvKQh9q8IpaJiRNJ_qYWduQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67815984</pqid></control><display><type>article</type><title>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Asthagiri, D. ; Pratt, L. R. ; Kress, J. D. ; Berne, Bruce J.</creator><creatorcontrib>Asthagiri, D. ; Pratt, L. R. ; Kress, J. D. ; Berne, Bruce J.</creatorcontrib><description>The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5 +as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0408071102</identifier><identifier>PMID: 15831590</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Approximation ; Atoms ; Biophysical Phenomena ; Biophysics ; Cations ; Chemical Theory and Computation Special Feature ; Chemistry - methods ; Computer Simulation ; Dielectric materials ; Electrons ; Free energy ; Ions ; Ligands ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Molecular dynamics ; Molecular Structure ; Molecular theory ; Molecules ; Oxygen ; Oxygen - chemistry ; Physical Sciences ; Protein Conformation ; Protons ; Solvents ; Static Electricity ; Thermodynamics ; Time Factors ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-05, Vol.102 (19), p.6704-6708</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</citedby><cites>FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375418$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375418$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15831590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asthagiri, D.</creatorcontrib><creatorcontrib>Pratt, L. R.</creatorcontrib><creatorcontrib>Kress, J. D.</creatorcontrib><creatorcontrib>Berne, Bruce J.</creatorcontrib><title>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5 +as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.</description><subject>Approximation</subject><subject>Atoms</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cations</subject><subject>Chemical Theory and Computation Special Feature</subject><subject>Chemistry - methods</subject><subject>Computer Simulation</subject><subject>Dielectric materials</subject><subject>Electrons</subject><subject>Free energy</subject><subject>Ions</subject><subject>Ligands</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular dynamics</subject><subject>Molecular Structure</subject><subject>Molecular theory</subject><subject>Molecules</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Physical Sciences</subject><subject>Protein Conformation</subject><subject>Protons</subject><subject>Solvents</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq0KVBbomQsCnxAIBcax449LK0T5kkBV1fZsOY5TjLzxbpxU3X9fr3bFlgunkWaeeWf0IHRA4IKAoJezzqQLYCBBEALlBzQhoEjBmYItNAEoRSFZyXbQbkovAKAqCR_RDqkkJZWCCfpyVWPf-cFH_BSDs2MwPf666MzU24RN1-Dvo0nePrvcMAH_GMZmgWOL789PsZmf7aPt1oTkPq3rHvp1e_Pz-r54_Hb3cH31WFjG1VCopmGtpbzhjnLOoRLGOisYE0SRqiS1bKFkqm5tJZgUIAUVTV2qpmWy5gB0D31e5c7Geuoa67qhN0HPej81_UJH4_XbSeef9e_4R2ctIFiZA07WAX2cjy4NeuqTdSGYzsUxaS5kNiJZBi9XoO1jSr1rX48Q0Evpeildb6TnjaP_f9vwa8sZOF0Dy81NXKmJyoeB6XYMYXB_h4wev49m4nBFvKQh9q8IpaJiRNJ_qYWduQ</recordid><startdate>20050510</startdate><enddate>20050510</enddate><creator>Asthagiri, D.</creator><creator>Pratt, L. R.</creator><creator>Kress, J. D.</creator><creator>Berne, Bruce J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050510</creationdate><title>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</title><author>Asthagiri, D. ; Pratt, L. R. ; Kress, J. D. ; Berne, Bruce J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-9dd4fc36d6e3666057acec7447191521b8f0249bfc5748708737db29df48b6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Atoms</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cations</topic><topic>Chemical Theory and Computation Special Feature</topic><topic>Chemistry - methods</topic><topic>Computer Simulation</topic><topic>Dielectric materials</topic><topic>Electrons</topic><topic>Free energy</topic><topic>Ions</topic><topic>Ligands</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular dynamics</topic><topic>Molecular Structure</topic><topic>Molecular theory</topic><topic>Molecules</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Physical Sciences</topic><topic>Protein Conformation</topic><topic>Protons</topic><topic>Solvents</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asthagiri, D.</creatorcontrib><creatorcontrib>Pratt, L. R.</creatorcontrib><creatorcontrib>Kress, J. D.</creatorcontrib><creatorcontrib>Berne, Bruce J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asthagiri, D.</au><au>Pratt, L. R.</au><au>Kress, J. D.</au><au>Berne, Bruce J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-05-10</date><risdate>2005</risdate><volume>102</volume><issue>19</issue><spage>6704</spage><epage>6708</epage><pages>6704-6708</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The excess proton in water, H+( aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+and H2O5 +as natural innershell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15831590</pmid><doi>10.1073/pnas.0408071102</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-05, Vol.102 (19), p.6704-6708
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_67815984
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Approximation
Atoms
Biophysical Phenomena
Biophysics
Cations
Chemical Theory and Computation Special Feature
Chemistry - methods
Computer Simulation
Dielectric materials
Electrons
Free energy
Ions
Ligands
Models, Chemical
Models, Molecular
Molecular Conformation
Molecular dynamics
Molecular Structure
Molecular theory
Molecules
Oxygen
Oxygen - chemistry
Physical Sciences
Protein Conformation
Protons
Solvents
Static Electricity
Thermodynamics
Time Factors
Water - chemistry
title Ab initio Molecular Dynamics and Quasichemical Study of H+( aq)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20Molecular%20Dynamics%20and%20Quasichemical%20Study%20of%20H+(%20aq)&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Asthagiri,%20D.&rft.date=2005-05-10&rft.volume=102&rft.issue=19&rft.spage=6704&rft.epage=6708&rft.pages=6704-6708&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0408071102&rft_dat=%3Cjstor_proqu%3E3375418%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67815984&rft_id=info:pmid/15831590&rft_jstor_id=3375418&rfr_iscdi=true