evolutionary origin of insect telomeric repeats, (TTAGG) N

RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosome research 2005, Vol.13 (2), p.145-156
Hauptverfasser: Vítková, Magda, Král, Jiří, Traut, Walther, Zrzavý, Jan, Marec, František
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 2
container_start_page 145
container_title Chromosome research
container_volume 13
creator Vítková, Magda
Král, Jiří
Traut, Walther
Zrzavý, Jan
Marec, František
description RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO).
doi_str_mv 10.1007/s10577-005-7721-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67804126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67804126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bb610170ee1f87917ac8188f4f3a2168141cb4a34a2d19b389f3007020191fee3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUgIMobv74A7xo8SAKVt9r0ib1NoZOYejB7RzSLhkdbTOTVvC_N6MDwVPe4XuPfB8hFwgPCMAfPULKeQyQxpwnGMMBGWPKaZwJlh-SMeQZj2mYR-TE-w0ACMrwmIwwFRlSYGPypL9t3XeVbZX7iayr1lUbWRNVrddlF3W6to12VRk5vdWq8_fR7WIxmc3uovczcmRU7fX5_j0ly5fnxfQ1nn_M3qaTeVxSil1cFBkCctAajeA5clUKFMIwQ1WCmUCGZcEUZSpZYV5QkRsa5CABzNFoTU_JzXB36-xXr30nm8qXuq5Vq23vZcYFMEyyAF7_Aze2d234m-QpCBak0wDhAJXOeu-0kVtXNUFeIshdVTlUlaGq3FWVEHYu94f7otGrv419xgBcDYBRVqq1q7xcfgaBnQjHnDL6C1ELeGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750845865</pqid></control><display><type>article</type><title>evolutionary origin of insect telomeric repeats, (TTAGG) N</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Vítková, Magda ; Král, Jiří ; Traut, Walther ; Zrzavý, Jan ; Marec, František</creator><creatorcontrib>Vítková, Magda ; Král, Jiří ; Traut, Walther ; Zrzavý, Jan ; Marec, František</creatorcontrib><description>RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO).</description><identifier>ISSN: 0967-3849</identifier><identifier>EISSN: 1573-6849</identifier><identifier>DOI: 10.1007/s10577-005-7721-0</identifier><identifier>PMID: 15861304</identifier><language>eng</language><publisher>Netherlands: Dordrecht : Kluwer Academic Publishers</publisher><subject>Acari - genetics ; Animals ; Arthropoda ; Arthropods - classification ; Arthropods - genetics ; Blotting, Southern ; chromosomes ; Crustacea - genetics ; DNA - genetics ; Evolution, Molecular ; In Situ Hybridization, Fluorescence ; Insecta - genetics ; Male ; Onychophora ; phylogeny ; Proteins ; Scorpions - genetics ; Tandem Repeat Sequences ; Tardigrada ; telomere ; Telomere - genetics ; Vertebrates - genetics</subject><ispartof>Chromosome research, 2005, Vol.13 (2), p.145-156</ispartof><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bb610170ee1f87917ac8188f4f3a2168141cb4a34a2d19b389f3007020191fee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15861304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vítková, Magda</creatorcontrib><creatorcontrib>Král, Jiří</creatorcontrib><creatorcontrib>Traut, Walther</creatorcontrib><creatorcontrib>Zrzavý, Jan</creatorcontrib><creatorcontrib>Marec, František</creatorcontrib><title>evolutionary origin of insect telomeric repeats, (TTAGG) N</title><title>Chromosome research</title><addtitle>Chromosome Res</addtitle><description>RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO).</description><subject>Acari - genetics</subject><subject>Animals</subject><subject>Arthropoda</subject><subject>Arthropods - classification</subject><subject>Arthropods - genetics</subject><subject>Blotting, Southern</subject><subject>chromosomes</subject><subject>Crustacea - genetics</subject><subject>DNA - genetics</subject><subject>Evolution, Molecular</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Insecta - genetics</subject><subject>Male</subject><subject>Onychophora</subject><subject>phylogeny</subject><subject>Proteins</subject><subject>Scorpions - genetics</subject><subject>Tandem Repeat Sequences</subject><subject>Tardigrada</subject><subject>telomere</subject><subject>Telomere - genetics</subject><subject>Vertebrates - genetics</subject><issn>0967-3849</issn><issn>1573-6849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkM9LwzAUgIMobv74A7xo8SAKVt9r0ib1NoZOYejB7RzSLhkdbTOTVvC_N6MDwVPe4XuPfB8hFwgPCMAfPULKeQyQxpwnGMMBGWPKaZwJlh-SMeQZj2mYR-TE-w0ACMrwmIwwFRlSYGPypL9t3XeVbZX7iayr1lUbWRNVrddlF3W6to12VRk5vdWq8_fR7WIxmc3uovczcmRU7fX5_j0ly5fnxfQ1nn_M3qaTeVxSil1cFBkCctAajeA5clUKFMIwQ1WCmUCGZcEUZSpZYV5QkRsa5CABzNFoTU_JzXB36-xXr30nm8qXuq5Vq23vZcYFMEyyAF7_Aze2d234m-QpCBak0wDhAJXOeu-0kVtXNUFeIshdVTlUlaGq3FWVEHYu94f7otGrv419xgBcDYBRVqq1q7xcfgaBnQjHnDL6C1ELeGU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Vítková, Magda</creator><creator>Král, Jiří</creator><creator>Traut, Walther</creator><creator>Zrzavý, Jan</creator><creator>Marec, František</creator><general>Dordrecht : Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2005</creationdate><title>evolutionary origin of insect telomeric repeats, (TTAGG) N</title><author>Vítková, Magda ; Král, Jiří ; Traut, Walther ; Zrzavý, Jan ; Marec, František</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bb610170ee1f87917ac8188f4f3a2168141cb4a34a2d19b389f3007020191fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acari - genetics</topic><topic>Animals</topic><topic>Arthropoda</topic><topic>Arthropods - classification</topic><topic>Arthropods - genetics</topic><topic>Blotting, Southern</topic><topic>chromosomes</topic><topic>Crustacea - genetics</topic><topic>DNA - genetics</topic><topic>Evolution, Molecular</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Insecta - genetics</topic><topic>Male</topic><topic>Onychophora</topic><topic>phylogeny</topic><topic>Proteins</topic><topic>Scorpions - genetics</topic><topic>Tandem Repeat Sequences</topic><topic>Tardigrada</topic><topic>telomere</topic><topic>Telomere - genetics</topic><topic>Vertebrates - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vítková, Magda</creatorcontrib><creatorcontrib>Král, Jiří</creatorcontrib><creatorcontrib>Traut, Walther</creatorcontrib><creatorcontrib>Zrzavý, Jan</creatorcontrib><creatorcontrib>Marec, František</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vítková, Magda</au><au>Král, Jiří</au><au>Traut, Walther</au><au>Zrzavý, Jan</au><au>Marec, František</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>evolutionary origin of insect telomeric repeats, (TTAGG) N</atitle><jtitle>Chromosome research</jtitle><addtitle>Chromosome Res</addtitle><date>2005</date><risdate>2005</risdate><volume>13</volume><issue>2</issue><spage>145</spage><epage>156</epage><pages>145-156</pages><issn>0967-3849</issn><eissn>1573-6849</eissn><abstract>RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO).</abstract><cop>Netherlands</cop><pub>Dordrecht : Kluwer Academic Publishers</pub><pmid>15861304</pmid><doi>10.1007/s10577-005-7721-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-3849
ispartof Chromosome research, 2005, Vol.13 (2), p.145-156
issn 0967-3849
1573-6849
language eng
recordid cdi_proquest_miscellaneous_67804126
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acari - genetics
Animals
Arthropoda
Arthropods - classification
Arthropods - genetics
Blotting, Southern
chromosomes
Crustacea - genetics
DNA - genetics
Evolution, Molecular
In Situ Hybridization, Fluorescence
Insecta - genetics
Male
Onychophora
phylogeny
Proteins
Scorpions - genetics
Tandem Repeat Sequences
Tardigrada
telomere
Telomere - genetics
Vertebrates - genetics
title evolutionary origin of insect telomeric repeats, (TTAGG) N
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=evolutionary%20origin%20of%20insect%20telomeric%20repeats,%20(TTAGG)%20N&rft.jtitle=Chromosome%20research&rft.au=V%C3%ADtkov%C3%A1,%20Magda&rft.date=2005&rft.volume=13&rft.issue=2&rft.spage=145&rft.epage=156&rft.pages=145-156&rft.issn=0967-3849&rft.eissn=1573-6849&rft_id=info:doi/10.1007/s10577-005-7721-0&rft_dat=%3Cproquest_cross%3E67804126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750845865&rft_id=info:pmid/15861304&rfr_iscdi=true