evolutionary origin of insect telomeric repeats, (TTAGG) N
RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest...
Gespeichert in:
Veröffentlicht in: | Chromosome research 2005, Vol.13 (2), p.145-156 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | Chromosome research |
container_volume | 13 |
creator | Vítková, Magda Král, Jiří Traut, Walther Zrzavý, Jan Marec, František |
description | RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO). |
doi_str_mv | 10.1007/s10577-005-7721-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67804126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67804126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bb610170ee1f87917ac8188f4f3a2168141cb4a34a2d19b389f3007020191fee3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUgIMobv74A7xo8SAKVt9r0ib1NoZOYejB7RzSLhkdbTOTVvC_N6MDwVPe4XuPfB8hFwgPCMAfPULKeQyQxpwnGMMBGWPKaZwJlh-SMeQZj2mYR-TE-w0ACMrwmIwwFRlSYGPypL9t3XeVbZX7iayr1lUbWRNVrddlF3W6to12VRk5vdWq8_fR7WIxmc3uovczcmRU7fX5_j0ly5fnxfQ1nn_M3qaTeVxSil1cFBkCctAajeA5clUKFMIwQ1WCmUCGZcEUZSpZYV5QkRsa5CABzNFoTU_JzXB36-xXr30nm8qXuq5Vq23vZcYFMEyyAF7_Aze2d234m-QpCBak0wDhAJXOeu-0kVtXNUFeIshdVTlUlaGq3FWVEHYu94f7otGrv419xgBcDYBRVqq1q7xcfgaBnQjHnDL6C1ELeGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750845865</pqid></control><display><type>article</type><title>evolutionary origin of insect telomeric repeats, (TTAGG) N</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Vítková, Magda ; Král, Jiří ; Traut, Walther ; Zrzavý, Jan ; Marec, František</creator><creatorcontrib>Vítková, Magda ; Král, Jiří ; Traut, Walther ; Zrzavý, Jan ; Marec, František</creatorcontrib><description>RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO).</description><identifier>ISSN: 0967-3849</identifier><identifier>EISSN: 1573-6849</identifier><identifier>DOI: 10.1007/s10577-005-7721-0</identifier><identifier>PMID: 15861304</identifier><language>eng</language><publisher>Netherlands: Dordrecht : Kluwer Academic Publishers</publisher><subject>Acari - genetics ; Animals ; Arthropoda ; Arthropods - classification ; Arthropods - genetics ; Blotting, Southern ; chromosomes ; Crustacea - genetics ; DNA - genetics ; Evolution, Molecular ; In Situ Hybridization, Fluorescence ; Insecta - genetics ; Male ; Onychophora ; phylogeny ; Proteins ; Scorpions - genetics ; Tandem Repeat Sequences ; Tardigrada ; telomere ; Telomere - genetics ; Vertebrates - genetics</subject><ispartof>Chromosome research, 2005, Vol.13 (2), p.145-156</ispartof><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bb610170ee1f87917ac8188f4f3a2168141cb4a34a2d19b389f3007020191fee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15861304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vítková, Magda</creatorcontrib><creatorcontrib>Král, Jiří</creatorcontrib><creatorcontrib>Traut, Walther</creatorcontrib><creatorcontrib>Zrzavý, Jan</creatorcontrib><creatorcontrib>Marec, František</creatorcontrib><title>evolutionary origin of insect telomeric repeats, (TTAGG) N</title><title>Chromosome research</title><addtitle>Chromosome Res</addtitle><description>RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO).</description><subject>Acari - genetics</subject><subject>Animals</subject><subject>Arthropoda</subject><subject>Arthropods - classification</subject><subject>Arthropods - genetics</subject><subject>Blotting, Southern</subject><subject>chromosomes</subject><subject>Crustacea - genetics</subject><subject>DNA - genetics</subject><subject>Evolution, Molecular</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Insecta - genetics</subject><subject>Male</subject><subject>Onychophora</subject><subject>phylogeny</subject><subject>Proteins</subject><subject>Scorpions - genetics</subject><subject>Tandem Repeat Sequences</subject><subject>Tardigrada</subject><subject>telomere</subject><subject>Telomere - genetics</subject><subject>Vertebrates - genetics</subject><issn>0967-3849</issn><issn>1573-6849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkM9LwzAUgIMobv74A7xo8SAKVt9r0ib1NoZOYejB7RzSLhkdbTOTVvC_N6MDwVPe4XuPfB8hFwgPCMAfPULKeQyQxpwnGMMBGWPKaZwJlh-SMeQZj2mYR-TE-w0ACMrwmIwwFRlSYGPypL9t3XeVbZX7iayr1lUbWRNVrddlF3W6to12VRk5vdWq8_fR7WIxmc3uovczcmRU7fX5_j0ly5fnxfQ1nn_M3qaTeVxSil1cFBkCctAajeA5clUKFMIwQ1WCmUCGZcEUZSpZYV5QkRsa5CABzNFoTU_JzXB36-xXr30nm8qXuq5Vq23vZcYFMEyyAF7_Aze2d234m-QpCBak0wDhAJXOeu-0kVtXNUFeIshdVTlUlaGq3FWVEHYu94f7otGrv419xgBcDYBRVqq1q7xcfgaBnQjHnDL6C1ELeGU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Vítková, Magda</creator><creator>Král, Jiří</creator><creator>Traut, Walther</creator><creator>Zrzavý, Jan</creator><creator>Marec, František</creator><general>Dordrecht : Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2005</creationdate><title>evolutionary origin of insect telomeric repeats, (TTAGG) N</title><author>Vítková, Magda ; Král, Jiří ; Traut, Walther ; Zrzavý, Jan ; Marec, František</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bb610170ee1f87917ac8188f4f3a2168141cb4a34a2d19b389f3007020191fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acari - genetics</topic><topic>Animals</topic><topic>Arthropoda</topic><topic>Arthropods - classification</topic><topic>Arthropods - genetics</topic><topic>Blotting, Southern</topic><topic>chromosomes</topic><topic>Crustacea - genetics</topic><topic>DNA - genetics</topic><topic>Evolution, Molecular</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Insecta - genetics</topic><topic>Male</topic><topic>Onychophora</topic><topic>phylogeny</topic><topic>Proteins</topic><topic>Scorpions - genetics</topic><topic>Tandem Repeat Sequences</topic><topic>Tardigrada</topic><topic>telomere</topic><topic>Telomere - genetics</topic><topic>Vertebrates - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vítková, Magda</creatorcontrib><creatorcontrib>Král, Jiří</creatorcontrib><creatorcontrib>Traut, Walther</creatorcontrib><creatorcontrib>Zrzavý, Jan</creatorcontrib><creatorcontrib>Marec, František</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vítková, Magda</au><au>Král, Jiří</au><au>Traut, Walther</au><au>Zrzavý, Jan</au><au>Marec, František</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>evolutionary origin of insect telomeric repeats, (TTAGG) N</atitle><jtitle>Chromosome research</jtitle><addtitle>Chromosome Res</addtitle><date>2005</date><risdate>2005</risdate><volume>13</volume><issue>2</issue><spage>145</spage><epage>156</epage><pages>145-156</pages><issn>0967-3849</issn><eissn>1573-6849</eissn><abstract>RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO).</abstract><cop>Netherlands</cop><pub>Dordrecht : Kluwer Academic Publishers</pub><pmid>15861304</pmid><doi>10.1007/s10577-005-7721-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-3849 |
ispartof | Chromosome research, 2005, Vol.13 (2), p.145-156 |
issn | 0967-3849 1573-6849 |
language | eng |
recordid | cdi_proquest_miscellaneous_67804126 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acari - genetics Animals Arthropoda Arthropods - classification Arthropods - genetics Blotting, Southern chromosomes Crustacea - genetics DNA - genetics Evolution, Molecular In Situ Hybridization, Fluorescence Insecta - genetics Male Onychophora phylogeny Proteins Scorpions - genetics Tandem Repeat Sequences Tardigrada telomere Telomere - genetics Vertebrates - genetics |
title | evolutionary origin of insect telomeric repeats, (TTAGG) N |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=evolutionary%20origin%20of%20insect%20telomeric%20repeats,%20(TTAGG)%20N&rft.jtitle=Chromosome%20research&rft.au=V%C3%ADtkov%C3%A1,%20Magda&rft.date=2005&rft.volume=13&rft.issue=2&rft.spage=145&rft.epage=156&rft.pages=145-156&rft.issn=0967-3849&rft.eissn=1573-6849&rft_id=info:doi/10.1007/s10577-005-7721-0&rft_dat=%3Cproquest_cross%3E67804126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750845865&rft_id=info:pmid/15861304&rfr_iscdi=true |