Phospholipid Morphologies on Photochemically Patterned Silane Monolayers
We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomas...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2005-05, Vol.127 (18), p.6752-6765 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6765 |
---|---|
container_issue | 18 |
container_start_page | 6752 |
container_title | Journal of the American Chemical Society |
container_volume | 127 |
creator | Howland, Michael C Sapuri-Butti, Annapoorna R Dixit, Sanhita S Dattelbaum, Andrew M Shreve, Andrew P Parikh, Atul N |
description | We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns. |
doi_str_mv | 10.1021/ja043439q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67795480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67795480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</originalsourceid><addsrcrecordid>eNptkE1PAyEURYnRaP1Y-AfMbDRxMcobmAGW2viVaKxp94RhwFKnQ4VpYv-9NG3sxhWPvPNubg5C54BvABdwO1OYEkrE9x4aQFngvISi2kcDjHGRM16RI3Qc4yx9acHhEB1ByStRCD5Az6Opj4upb93CNdmbD-vZfzoTM99ladl7PTVzp1XbrrKR6nsTOtNkY9eqzqSDzrdqZUI8RQdWtdGcbd8TNHl8mAyf89f3p5fh3WuuKGV9TpkA0JpgDZypoiKiFqRmpDKCljW3DDeEgq15Y2uimcaWWoAGKgtE45KcoKtN7CL476WJvZy7qE27buOXUVaMiZJynMDrDaiDjzEYKxfBzVVYScBybU3-WUvsxTZ0Wc9NsyO3mhJwuQVUTCZsUJ12ccdVjGMgInH5hnOxNz9_exW-UjHCSjkZjeXH_eO4GJGhHO5ylY5y5pehS-r-KfgL0_OPqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67795480</pqid></control><display><type>article</type><title>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Howland, Michael C ; Sapuri-Butti, Annapoorna R ; Dixit, Sanhita S ; Dattelbaum, Andrew M ; Shreve, Andrew P ; Parikh, Atul N</creator><creatorcontrib>Howland, Michael C ; Sapuri-Butti, Annapoorna R ; Dixit, Sanhita S ; Dattelbaum, Andrew M ; Shreve, Andrew P ; Parikh, Atul N</creatorcontrib><description>We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja043439q</identifier><identifier>PMID: 15869298</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Biological and medical sciences ; Chemistry ; Colloidal state and disperse state ; Dimyristoylphosphatidylcholine - chemistry ; Disperse state. Micelles ; Exact sciences and technology ; Fluorescein-5-isothiocyanate - analogs & derivatives ; Fluorescein-5-isothiocyanate - chemistry ; Fluorescent Dyes - chemistry ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; Lipid Bilayers - chemistry ; Membrane Fluidity ; Membranes ; Microscopy, Fluorescence ; Molecular biophysics ; Phosphatidylcholines - chemistry ; Phospholipids - chemistry ; Photobleaching ; Physico-chemical properties of biomolecules ; Serum Albumin, Bovine - chemistry ; Silanes - chemistry ; Streptavidin - chemistry</subject><ispartof>Journal of the American Chemical Society, 2005-05, Vol.127 (18), p.6752-6765</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</citedby><cites>FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja043439q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja043439q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16780139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15869298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howland, Michael C</creatorcontrib><creatorcontrib>Sapuri-Butti, Annapoorna R</creatorcontrib><creatorcontrib>Dixit, Sanhita S</creatorcontrib><creatorcontrib>Dattelbaum, Andrew M</creatorcontrib><creatorcontrib>Shreve, Andrew P</creatorcontrib><creatorcontrib>Parikh, Atul N</creatorcontrib><title>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.</description><subject>Adsorption</subject><subject>Biological and medical sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Dimyristoylphosphatidylcholine - chemistry</subject><subject>Disperse state. Micelles</subject><subject>Exact sciences and technology</subject><subject>Fluorescein-5-isothiocyanate - analogs & derivatives</subject><subject>Fluorescein-5-isothiocyanate - chemistry</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular biophysics</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phospholipids - chemistry</subject><subject>Photobleaching</subject><subject>Physico-chemical properties of biomolecules</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Silanes - chemistry</subject><subject>Streptavidin - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1PAyEURYnRaP1Y-AfMbDRxMcobmAGW2viVaKxp94RhwFKnQ4VpYv-9NG3sxhWPvPNubg5C54BvABdwO1OYEkrE9x4aQFngvISi2kcDjHGRM16RI3Qc4yx9acHhEB1ByStRCD5Az6Opj4upb93CNdmbD-vZfzoTM99ladl7PTVzp1XbrrKR6nsTOtNkY9eqzqSDzrdqZUI8RQdWtdGcbd8TNHl8mAyf89f3p5fh3WuuKGV9TpkA0JpgDZypoiKiFqRmpDKCljW3DDeEgq15Y2uimcaWWoAGKgtE45KcoKtN7CL476WJvZy7qE27buOXUVaMiZJynMDrDaiDjzEYKxfBzVVYScBybU3-WUvsxTZ0Wc9NsyO3mhJwuQVUTCZsUJ12ccdVjGMgInH5hnOxNz9_exW-UjHCSjkZjeXH_eO4GJGhHO5ylY5y5pehS-r-KfgL0_OPqA</recordid><startdate>20050511</startdate><enddate>20050511</enddate><creator>Howland, Michael C</creator><creator>Sapuri-Butti, Annapoorna R</creator><creator>Dixit, Sanhita S</creator><creator>Dattelbaum, Andrew M</creator><creator>Shreve, Andrew P</creator><creator>Parikh, Atul N</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050511</creationdate><title>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</title><author>Howland, Michael C ; Sapuri-Butti, Annapoorna R ; Dixit, Sanhita S ; Dattelbaum, Andrew M ; Shreve, Andrew P ; Parikh, Atul N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adsorption</topic><topic>Biological and medical sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Dimyristoylphosphatidylcholine - chemistry</topic><topic>Disperse state. Micelles</topic><topic>Exact sciences and technology</topic><topic>Fluorescein-5-isothiocyanate - analogs & derivatives</topic><topic>Fluorescein-5-isothiocyanate - chemistry</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular biophysics</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phospholipids - chemistry</topic><topic>Photobleaching</topic><topic>Physico-chemical properties of biomolecules</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Silanes - chemistry</topic><topic>Streptavidin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howland, Michael C</creatorcontrib><creatorcontrib>Sapuri-Butti, Annapoorna R</creatorcontrib><creatorcontrib>Dixit, Sanhita S</creatorcontrib><creatorcontrib>Dattelbaum, Andrew M</creatorcontrib><creatorcontrib>Shreve, Andrew P</creatorcontrib><creatorcontrib>Parikh, Atul N</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howland, Michael C</au><au>Sapuri-Butti, Annapoorna R</au><au>Dixit, Sanhita S</au><au>Dattelbaum, Andrew M</au><au>Shreve, Andrew P</au><au>Parikh, Atul N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2005-05-11</date><risdate>2005</risdate><volume>127</volume><issue>18</issue><spage>6752</spage><epage>6765</epage><pages>6752-6765</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15869298</pmid><doi>10.1021/ja043439q</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2005-05, Vol.127 (18), p.6752-6765 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_67795480 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adsorption Biological and medical sciences Chemistry Colloidal state and disperse state Dimyristoylphosphatidylcholine - chemistry Disperse state. Micelles Exact sciences and technology Fluorescein-5-isothiocyanate - analogs & derivatives Fluorescein-5-isothiocyanate - chemistry Fluorescent Dyes - chemistry Fundamental and applied biological sciences. Psychology General and physical chemistry Lipid Bilayers - chemistry Membrane Fluidity Membranes Microscopy, Fluorescence Molecular biophysics Phosphatidylcholines - chemistry Phospholipids - chemistry Photobleaching Physico-chemical properties of biomolecules Serum Albumin, Bovine - chemistry Silanes - chemistry Streptavidin - chemistry |
title | Phospholipid Morphologies on Photochemically Patterned Silane Monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%20Morphologies%20on%20Photochemically%20Patterned%20Silane%20Monolayers&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Howland,%20Michael%20C&rft.date=2005-05-11&rft.volume=127&rft.issue=18&rft.spage=6752&rft.epage=6765&rft.pages=6752-6765&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja043439q&rft_dat=%3Cproquest_cross%3E67795480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67795480&rft_id=info:pmid/15869298&rfr_iscdi=true |