Phospholipid Morphologies on Photochemically Patterned Silane Monolayers

We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2005-05, Vol.127 (18), p.6752-6765
Hauptverfasser: Howland, Michael C, Sapuri-Butti, Annapoorna R, Dixit, Sanhita S, Dattelbaum, Andrew M, Shreve, Andrew P, Parikh, Atul N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6765
container_issue 18
container_start_page 6752
container_title Journal of the American Chemical Society
container_volume 127
creator Howland, Michael C
Sapuri-Butti, Annapoorna R
Dixit, Sanhita S
Dattelbaum, Andrew M
Shreve, Andrew P
Parikh, Atul N
description We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.
doi_str_mv 10.1021/ja043439q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67795480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67795480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</originalsourceid><addsrcrecordid>eNptkE1PAyEURYnRaP1Y-AfMbDRxMcobmAGW2viVaKxp94RhwFKnQ4VpYv-9NG3sxhWPvPNubg5C54BvABdwO1OYEkrE9x4aQFngvISi2kcDjHGRM16RI3Qc4yx9acHhEB1ByStRCD5Az6Opj4upb93CNdmbD-vZfzoTM99ladl7PTVzp1XbrrKR6nsTOtNkY9eqzqSDzrdqZUI8RQdWtdGcbd8TNHl8mAyf89f3p5fh3WuuKGV9TpkA0JpgDZypoiKiFqRmpDKCljW3DDeEgq15Y2uimcaWWoAGKgtE45KcoKtN7CL476WJvZy7qE27buOXUVaMiZJynMDrDaiDjzEYKxfBzVVYScBybU3-WUvsxTZ0Wc9NsyO3mhJwuQVUTCZsUJ12ccdVjGMgInH5hnOxNz9_exW-UjHCSjkZjeXH_eO4GJGhHO5ylY5y5pehS-r-KfgL0_OPqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67795480</pqid></control><display><type>article</type><title>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Howland, Michael C ; Sapuri-Butti, Annapoorna R ; Dixit, Sanhita S ; Dattelbaum, Andrew M ; Shreve, Andrew P ; Parikh, Atul N</creator><creatorcontrib>Howland, Michael C ; Sapuri-Butti, Annapoorna R ; Dixit, Sanhita S ; Dattelbaum, Andrew M ; Shreve, Andrew P ; Parikh, Atul N</creatorcontrib><description>We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja043439q</identifier><identifier>PMID: 15869298</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Biological and medical sciences ; Chemistry ; Colloidal state and disperse state ; Dimyristoylphosphatidylcholine - chemistry ; Disperse state. Micelles ; Exact sciences and technology ; Fluorescein-5-isothiocyanate - analogs &amp; derivatives ; Fluorescein-5-isothiocyanate - chemistry ; Fluorescent Dyes - chemistry ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; Lipid Bilayers - chemistry ; Membrane Fluidity ; Membranes ; Microscopy, Fluorescence ; Molecular biophysics ; Phosphatidylcholines - chemistry ; Phospholipids - chemistry ; Photobleaching ; Physico-chemical properties of biomolecules ; Serum Albumin, Bovine - chemistry ; Silanes - chemistry ; Streptavidin - chemistry</subject><ispartof>Journal of the American Chemical Society, 2005-05, Vol.127 (18), p.6752-6765</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</citedby><cites>FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja043439q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja043439q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16780139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15869298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howland, Michael C</creatorcontrib><creatorcontrib>Sapuri-Butti, Annapoorna R</creatorcontrib><creatorcontrib>Dixit, Sanhita S</creatorcontrib><creatorcontrib>Dattelbaum, Andrew M</creatorcontrib><creatorcontrib>Shreve, Andrew P</creatorcontrib><creatorcontrib>Parikh, Atul N</creatorcontrib><title>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.</description><subject>Adsorption</subject><subject>Biological and medical sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Dimyristoylphosphatidylcholine - chemistry</subject><subject>Disperse state. Micelles</subject><subject>Exact sciences and technology</subject><subject>Fluorescein-5-isothiocyanate - analogs &amp; derivatives</subject><subject>Fluorescein-5-isothiocyanate - chemistry</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular biophysics</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phospholipids - chemistry</subject><subject>Photobleaching</subject><subject>Physico-chemical properties of biomolecules</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Silanes - chemistry</subject><subject>Streptavidin - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1PAyEURYnRaP1Y-AfMbDRxMcobmAGW2viVaKxp94RhwFKnQ4VpYv-9NG3sxhWPvPNubg5C54BvABdwO1OYEkrE9x4aQFngvISi2kcDjHGRM16RI3Qc4yx9acHhEB1ByStRCD5Az6Opj4upb93CNdmbD-vZfzoTM99ladl7PTVzp1XbrrKR6nsTOtNkY9eqzqSDzrdqZUI8RQdWtdGcbd8TNHl8mAyf89f3p5fh3WuuKGV9TpkA0JpgDZypoiKiFqRmpDKCljW3DDeEgq15Y2uimcaWWoAGKgtE45KcoKtN7CL476WJvZy7qE27buOXUVaMiZJynMDrDaiDjzEYKxfBzVVYScBybU3-WUvsxTZ0Wc9NsyO3mhJwuQVUTCZsUJ12ccdVjGMgInH5hnOxNz9_exW-UjHCSjkZjeXH_eO4GJGhHO5ylY5y5pehS-r-KfgL0_OPqA</recordid><startdate>20050511</startdate><enddate>20050511</enddate><creator>Howland, Michael C</creator><creator>Sapuri-Butti, Annapoorna R</creator><creator>Dixit, Sanhita S</creator><creator>Dattelbaum, Andrew M</creator><creator>Shreve, Andrew P</creator><creator>Parikh, Atul N</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050511</creationdate><title>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</title><author>Howland, Michael C ; Sapuri-Butti, Annapoorna R ; Dixit, Sanhita S ; Dattelbaum, Andrew M ; Shreve, Andrew P ; Parikh, Atul N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-47911cc30c187a2639b93b736e945b8f70d341fb8dfb3c7c0f4f11d16f13c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adsorption</topic><topic>Biological and medical sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Dimyristoylphosphatidylcholine - chemistry</topic><topic>Disperse state. Micelles</topic><topic>Exact sciences and technology</topic><topic>Fluorescein-5-isothiocyanate - analogs &amp; derivatives</topic><topic>Fluorescein-5-isothiocyanate - chemistry</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular biophysics</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phospholipids - chemistry</topic><topic>Photobleaching</topic><topic>Physico-chemical properties of biomolecules</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Silanes - chemistry</topic><topic>Streptavidin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howland, Michael C</creatorcontrib><creatorcontrib>Sapuri-Butti, Annapoorna R</creatorcontrib><creatorcontrib>Dixit, Sanhita S</creatorcontrib><creatorcontrib>Dattelbaum, Andrew M</creatorcontrib><creatorcontrib>Shreve, Andrew P</creatorcontrib><creatorcontrib>Parikh, Atul N</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howland, Michael C</au><au>Sapuri-Butti, Annapoorna R</au><au>Dixit, Sanhita S</au><au>Dattelbaum, Andrew M</au><au>Shreve, Andrew P</au><au>Parikh, Atul N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid Morphologies on Photochemically Patterned Silane Monolayers</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2005-05-11</date><risdate>2005</risdate><volume>127</volume><issue>18</issue><spage>6752</spage><epage>6765</epage><pages>6752-6765</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15869298</pmid><doi>10.1021/ja043439q</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2005-05, Vol.127 (18), p.6752-6765
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_67795480
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Biological and medical sciences
Chemistry
Colloidal state and disperse state
Dimyristoylphosphatidylcholine - chemistry
Disperse state. Micelles
Exact sciences and technology
Fluorescein-5-isothiocyanate - analogs & derivatives
Fluorescein-5-isothiocyanate - chemistry
Fluorescent Dyes - chemistry
Fundamental and applied biological sciences. Psychology
General and physical chemistry
Lipid Bilayers - chemistry
Membrane Fluidity
Membranes
Microscopy, Fluorescence
Molecular biophysics
Phosphatidylcholines - chemistry
Phospholipids - chemistry
Photobleaching
Physico-chemical properties of biomolecules
Serum Albumin, Bovine - chemistry
Silanes - chemistry
Streptavidin - chemistry
title Phospholipid Morphologies on Photochemically Patterned Silane Monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%20Morphologies%20on%20Photochemically%20Patterned%20Silane%20Monolayers&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Howland,%20Michael%20C&rft.date=2005-05-11&rft.volume=127&rft.issue=18&rft.spage=6752&rft.epage=6765&rft.pages=6752-6765&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja043439q&rft_dat=%3Cproquest_cross%3E67795480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67795480&rft_id=info:pmid/15869298&rfr_iscdi=true