Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro

A high proportion of NG2 in the adult rat spinal cord is saline-soluble and migrates slightly faster than intact NG2 on SDS–PAGE, suggesting that it represents the shed ectodomain of NG2. In the injured cerebral cortex, much of the overall increase in NG2 is due to the saline-soluble (shed), rather...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2005-05, Vol.29 (1), p.82-96
Hauptverfasser: Asher, Richard A., Morgenstern, Daniel A., Properzi, Francesca, Nishiyama, Akiko, Levine, Joel M., Fawcett, James W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 82
container_title Molecular and cellular neuroscience
container_volume 29
creator Asher, Richard A.
Morgenstern, Daniel A.
Properzi, Francesca
Nishiyama, Akiko
Levine, Joel M.
Fawcett, James W.
description A high proportion of NG2 in the adult rat spinal cord is saline-soluble and migrates slightly faster than intact NG2 on SDS–PAGE, suggesting that it represents the shed ectodomain of NG2. In the injured cerebral cortex, much of the overall increase in NG2 is due to the saline-soluble (shed), rather than the detergent-soluble (intact), form. Hydroxamic acid metalloproteinase inhibitors, but not TIMPs, were able to prevent NG2 shedding in oligodendrocyte precursor cells (OPCs) in vitro . The generation of another truncated form of NG2 was, however, sensitive to TIMP-2 and TIMP-3. Two observations suggest that NG2 is involved in PDGF signaling in OPCs: the rate of NG2 shedding increased with cell density and NG2 expression was increased in the absence of PDGF. Ectodomain shedding converts NG2 into a diffusible entity able to interact with the growth cone, and we suggest that this release is likely to enhance its axon growth-inhibitory activity.
doi_str_mv 10.1016/j.mcn.2005.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67789862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743105000229</els_id><sourcerecordid>67789862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-34d12a40a085e82ba75454d52b804f2443bc65015131c06c3ef3a1a2ead1c5963</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS1ERELCB7BBXrHrpvzqh1ihCAJSRDbJ2nLb1YlH3fZgexKFr8eTGYkdrGzL5x6V6hLynkHLgHWfNu1qQ8sBVAu8BWCvyBmDUTWj4P3r_V3KppeCnZK3OW-ggnwUb8gpU0PXgRzPyO_bp0gzbk0yBemKxSxL3KZY0AeTkRpb_KMvHjM1CWnCvI0h-2lBOsdEywPS_IDO-XBPTXC0Ri3mvH_G-eX75xWnL8J4vzxbE6gPtBpTvCAns1kyvjue5-Tu29fby-_N9c3Vj8sv140VAy-NkI5xI8HAoHDgk-mVVNIpPg0gZy6lmGyngCkmmIXOCpyFYYajccyqsRPn5OPBW6f4tcNc9OqzxWUxAeMu667vh3Ho-H9B1gvR19VWkB1Am2LOCWe9TX416Vkz0Ptm9EbXZvS-GQ1c12Zq5sNRvptWdH8Txyoq8PkAYN3Fo8eks_UYLDqf0Bbtov-H_g9ZI5_H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17337932</pqid></control><display><type>article</type><title>Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Asher, Richard A. ; Morgenstern, Daniel A. ; Properzi, Francesca ; Nishiyama, Akiko ; Levine, Joel M. ; Fawcett, James W.</creator><creatorcontrib>Asher, Richard A. ; Morgenstern, Daniel A. ; Properzi, Francesca ; Nishiyama, Akiko ; Levine, Joel M. ; Fawcett, James W.</creatorcontrib><description>A high proportion of NG2 in the adult rat spinal cord is saline-soluble and migrates slightly faster than intact NG2 on SDS–PAGE, suggesting that it represents the shed ectodomain of NG2. In the injured cerebral cortex, much of the overall increase in NG2 is due to the saline-soluble (shed), rather than the detergent-soluble (intact), form. Hydroxamic acid metalloproteinase inhibitors, but not TIMPs, were able to prevent NG2 shedding in oligodendrocyte precursor cells (OPCs) in vitro . The generation of another truncated form of NG2 was, however, sensitive to TIMP-2 and TIMP-3. Two observations suggest that NG2 is involved in PDGF signaling in OPCs: the rate of NG2 shedding increased with cell density and NG2 expression was increased in the absence of PDGF. Ectodomain shedding converts NG2 into a diffusible entity able to interact with the growth cone, and we suggest that this release is likely to enhance its axon growth-inhibitory activity.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2005.02.001</identifier><identifier>PMID: 15866049</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antigens - chemistry ; Antigens - genetics ; Antigens - metabolism ; Axons - enzymology ; Cells, Cultured ; Female ; Growth Cones - enzymology ; In Vitro Techniques ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Oligodendroglia - cytology ; Protein Structure, Tertiary ; Proteoglycans - chemistry ; Proteoglycans - genetics ; Proteoglycans - metabolism ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Sodium Chloride ; Solubility ; Spinal Cord - cytology ; Spinal Cord - enzymology ; Stem Cells - cytology ; Stem Cells - ultrastructure ; Tissue Inhibitor of Metalloproteinase-1 - metabolism ; Tissue Inhibitor of Metalloproteinase-2 - metabolism ; Tissue Inhibitor of Metalloproteinase-3 - metabolism</subject><ispartof>Molecular and cellular neuroscience, 2005-05, Vol.29 (1), p.82-96</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-34d12a40a085e82ba75454d52b804f2443bc65015131c06c3ef3a1a2ead1c5963</citedby><cites>FETCH-LOGICAL-c382t-34d12a40a085e82ba75454d52b804f2443bc65015131c06c3ef3a1a2ead1c5963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2005.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15866049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asher, Richard A.</creatorcontrib><creatorcontrib>Morgenstern, Daniel A.</creatorcontrib><creatorcontrib>Properzi, Francesca</creatorcontrib><creatorcontrib>Nishiyama, Akiko</creatorcontrib><creatorcontrib>Levine, Joel M.</creatorcontrib><creatorcontrib>Fawcett, James W.</creatorcontrib><title>Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>A high proportion of NG2 in the adult rat spinal cord is saline-soluble and migrates slightly faster than intact NG2 on SDS–PAGE, suggesting that it represents the shed ectodomain of NG2. In the injured cerebral cortex, much of the overall increase in NG2 is due to the saline-soluble (shed), rather than the detergent-soluble (intact), form. Hydroxamic acid metalloproteinase inhibitors, but not TIMPs, were able to prevent NG2 shedding in oligodendrocyte precursor cells (OPCs) in vitro . The generation of another truncated form of NG2 was, however, sensitive to TIMP-2 and TIMP-3. Two observations suggest that NG2 is involved in PDGF signaling in OPCs: the rate of NG2 shedding increased with cell density and NG2 expression was increased in the absence of PDGF. Ectodomain shedding converts NG2 into a diffusible entity able to interact with the growth cone, and we suggest that this release is likely to enhance its axon growth-inhibitory activity.</description><subject>Animals</subject><subject>Antigens - chemistry</subject><subject>Antigens - genetics</subject><subject>Antigens - metabolism</subject><subject>Axons - enzymology</subject><subject>Cells, Cultured</subject><subject>Female</subject><subject>Growth Cones - enzymology</subject><subject>In Vitro Techniques</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Oligodendroglia - cytology</subject><subject>Protein Structure, Tertiary</subject><subject>Proteoglycans - chemistry</subject><subject>Proteoglycans - genetics</subject><subject>Proteoglycans - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sodium Chloride</subject><subject>Solubility</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - enzymology</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - ultrastructure</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - metabolism</subject><subject>Tissue Inhibitor of Metalloproteinase-2 - metabolism</subject><subject>Tissue Inhibitor of Metalloproteinase-3 - metabolism</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuFDEQRS1ERELCB7BBXrHrpvzqh1ihCAJSRDbJ2nLb1YlH3fZgexKFr8eTGYkdrGzL5x6V6hLynkHLgHWfNu1qQ8sBVAu8BWCvyBmDUTWj4P3r_V3KppeCnZK3OW-ggnwUb8gpU0PXgRzPyO_bp0gzbk0yBemKxSxL3KZY0AeTkRpb_KMvHjM1CWnCvI0h-2lBOsdEywPS_IDO-XBPTXC0Ri3mvH_G-eX75xWnL8J4vzxbE6gPtBpTvCAns1kyvjue5-Tu29fby-_N9c3Vj8sv140VAy-NkI5xI8HAoHDgk-mVVNIpPg0gZy6lmGyngCkmmIXOCpyFYYajccyqsRPn5OPBW6f4tcNc9OqzxWUxAeMu667vh3Ho-H9B1gvR19VWkB1Am2LOCWe9TX416Vkz0Ptm9EbXZvS-GQ1c12Zq5sNRvptWdH8Txyoq8PkAYN3Fo8eks_UYLDqf0Bbtov-H_g9ZI5_H</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Asher, Richard A.</creator><creator>Morgenstern, Daniel A.</creator><creator>Properzi, Francesca</creator><creator>Nishiyama, Akiko</creator><creator>Levine, Joel M.</creator><creator>Fawcett, James W.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro</title><author>Asher, Richard A. ; Morgenstern, Daniel A. ; Properzi, Francesca ; Nishiyama, Akiko ; Levine, Joel M. ; Fawcett, James W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-34d12a40a085e82ba75454d52b804f2443bc65015131c06c3ef3a1a2ead1c5963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Antigens - chemistry</topic><topic>Antigens - genetics</topic><topic>Antigens - metabolism</topic><topic>Axons - enzymology</topic><topic>Cells, Cultured</topic><topic>Female</topic><topic>Growth Cones - enzymology</topic><topic>In Vitro Techniques</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Oligodendroglia - cytology</topic><topic>Protein Structure, Tertiary</topic><topic>Proteoglycans - chemistry</topic><topic>Proteoglycans - genetics</topic><topic>Proteoglycans - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sodium Chloride</topic><topic>Solubility</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - enzymology</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - ultrastructure</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - metabolism</topic><topic>Tissue Inhibitor of Metalloproteinase-2 - metabolism</topic><topic>Tissue Inhibitor of Metalloproteinase-3 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asher, Richard A.</creatorcontrib><creatorcontrib>Morgenstern, Daniel A.</creatorcontrib><creatorcontrib>Properzi, Francesca</creatorcontrib><creatorcontrib>Nishiyama, Akiko</creatorcontrib><creatorcontrib>Levine, Joel M.</creatorcontrib><creatorcontrib>Fawcett, James W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asher, Richard A.</au><au>Morgenstern, Daniel A.</au><au>Properzi, Francesca</au><au>Nishiyama, Akiko</au><au>Levine, Joel M.</au><au>Fawcett, James W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>29</volume><issue>1</issue><spage>82</spage><epage>96</epage><pages>82-96</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>A high proportion of NG2 in the adult rat spinal cord is saline-soluble and migrates slightly faster than intact NG2 on SDS–PAGE, suggesting that it represents the shed ectodomain of NG2. In the injured cerebral cortex, much of the overall increase in NG2 is due to the saline-soluble (shed), rather than the detergent-soluble (intact), form. Hydroxamic acid metalloproteinase inhibitors, but not TIMPs, were able to prevent NG2 shedding in oligodendrocyte precursor cells (OPCs) in vitro . The generation of another truncated form of NG2 was, however, sensitive to TIMP-2 and TIMP-3. Two observations suggest that NG2 is involved in PDGF signaling in OPCs: the rate of NG2 shedding increased with cell density and NG2 expression was increased in the absence of PDGF. Ectodomain shedding converts NG2 into a diffusible entity able to interact with the growth cone, and we suggest that this release is likely to enhance its axon growth-inhibitory activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15866049</pmid><doi>10.1016/j.mcn.2005.02.001</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2005-05, Vol.29 (1), p.82-96
issn 1044-7431
1095-9327
language eng
recordid cdi_proquest_miscellaneous_67789862
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Antigens - chemistry
Antigens - genetics
Antigens - metabolism
Axons - enzymology
Cells, Cultured
Female
Growth Cones - enzymology
In Vitro Techniques
Metalloendopeptidases - genetics
Metalloendopeptidases - metabolism
Oligodendroglia - cytology
Protein Structure, Tertiary
Proteoglycans - chemistry
Proteoglycans - genetics
Proteoglycans - metabolism
Rats
Rats, Sprague-Dawley
Reverse Transcriptase Polymerase Chain Reaction
Sodium Chloride
Solubility
Spinal Cord - cytology
Spinal Cord - enzymology
Stem Cells - cytology
Stem Cells - ultrastructure
Tissue Inhibitor of Metalloproteinase-1 - metabolism
Tissue Inhibitor of Metalloproteinase-2 - metabolism
Tissue Inhibitor of Metalloproteinase-3 - metabolism
title Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20separate%20metalloproteinase%20activities%20are%20responsible%20for%20the%20shedding%20and%20processing%20of%20the%20NG2%20proteoglycan%20in%20vitro&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Asher,%20Richard%20A.&rft.date=2005-05-01&rft.volume=29&rft.issue=1&rft.spage=82&rft.epage=96&rft.pages=82-96&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2005.02.001&rft_dat=%3Cproquest_cross%3E67789862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17337932&rft_id=info:pmid/15866049&rft_els_id=S1044743105000229&rfr_iscdi=true