Engineering and functional immobilization of opioid receptors
Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the μ-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads)....
Gespeichert in:
Veröffentlicht in: | Protein engineering, design and selection design and selection, 2005-03, Vol.18 (3), p.153-160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 3 |
container_start_page | 153 |
container_title | Protein engineering, design and selection |
container_volume | 18 |
creator | Ott, David Neldner, Yvonne Cèbe, Régis Dodevski, Igor Plückthun, Andreas |
description | Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the μ-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable κ-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type μ-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCRs. |
doi_str_mv | 10.1093/protein/gzi012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67789447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/gzi012</oup_id><sourcerecordid>17869714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-ef69762adad9521d0bf72ca65199b22dcc730dc46e16f8f53883b4c0d719fda53</originalsourceid><addsrcrecordid>eNqF0DtLxTAYBuAgivfVUYqD4FBN0qRJBgc5eBdcVMQlpLkcom1TkxbUX28PPSi4OCWE5_vI-wKwh-AxgqI46WLorW9P5l8eIrwCNhEjKIeoIKs_d1xugK2UXiHEJUNoHWwgygSkDG-C0_N27ltro2_nmWpN5oZW9z60qs5804TK1_5LLR6y4LLQ-eBNFq22XR9i2gFrTtXJ7i7PbfB4cf4wu8rv7i-vZ2d3uSac97l1pWAlVkYZQTEysHIMa1VSJESFsdGaFdBoUlpUOu5owXlREQ0NQ8IZRYttcDjtHeO-Dzb1svFJ27pWrQ1DkiVjXBDC_oWI8fEriIzw4A98DUMcUyeJMSWCU75AxxPSMaQUrZNd9I2KnxJBuahfLuuXU_3jwP5y61A11vzyZd8jOJpAGLr_l-WT9am3Hz9axbcxb8GovHp-GQM9wdub2ZOcFd_JvKCO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225498584</pqid></control><display><type>article</type><title>Engineering and functional immobilization of opioid receptors</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Ott, David ; Neldner, Yvonne ; Cèbe, Régis ; Dodevski, Igor ; Plückthun, Andreas</creator><creatorcontrib>Ott, David ; Neldner, Yvonne ; Cèbe, Régis ; Dodevski, Igor ; Plückthun, Andreas</creatorcontrib><description>Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the μ-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable κ-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type μ-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCRs.</description><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/gzi012</identifier><identifier>PMID: 15790572</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Blotting, Western ; Cell Line ; Detergents - pharmacology ; Dose-Response Relationship, Drug ; functional immobilization ; Genetic Variation ; Humans ; Immunoprecipitation ; Ligands ; Lipid Bilayers ; Magnetics ; Molecular Sequence Data ; opioid receptors ; Protein Binding ; Protein Engineering - methods ; Protein Structure, Tertiary ; Proteins - chemistry ; Receptors, Opioid - chemistry ; Receptors, Opioid, kappa - chemistry ; Receptors, Opioid, mu - chemistry ; Recombinant Fusion Proteins - chemistry ; Sequence Homology, Amino Acid ; Transfection ; μ-opioid receptor</subject><ispartof>Protein engineering, design and selection, 2005-03, Vol.18 (3), p.153-160</ispartof><rights>The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oupjournals.org 2005</rights><rights>Copyright Oxford University Press(England) Mar 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-ef69762adad9521d0bf72ca65199b22dcc730dc46e16f8f53883b4c0d719fda53</citedby><cites>FETCH-LOGICAL-c488t-ef69762adad9521d0bf72ca65199b22dcc730dc46e16f8f53883b4c0d719fda53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15790572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ott, David</creatorcontrib><creatorcontrib>Neldner, Yvonne</creatorcontrib><creatorcontrib>Cèbe, Régis</creatorcontrib><creatorcontrib>Dodevski, Igor</creatorcontrib><creatorcontrib>Plückthun, Andreas</creatorcontrib><title>Engineering and functional immobilization of opioid receptors</title><title>Protein engineering, design and selection</title><addtitle>Protein Engineering, Design and Selection</addtitle><addtitle>Protein Engineering, Design and Selection</addtitle><description>Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the μ-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable κ-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type μ-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCRs.</description><subject>Amino Acid Sequence</subject><subject>Blotting, Western</subject><subject>Cell Line</subject><subject>Detergents - pharmacology</subject><subject>Dose-Response Relationship, Drug</subject><subject>functional immobilization</subject><subject>Genetic Variation</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Ligands</subject><subject>Lipid Bilayers</subject><subject>Magnetics</subject><subject>Molecular Sequence Data</subject><subject>opioid receptors</subject><subject>Protein Binding</subject><subject>Protein Engineering - methods</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins - chemistry</subject><subject>Receptors, Opioid - chemistry</subject><subject>Receptors, Opioid, kappa - chemistry</subject><subject>Receptors, Opioid, mu - chemistry</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Sequence Homology, Amino Acid</subject><subject>Transfection</subject><subject>μ-opioid receptor</subject><issn>1741-0126</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0DtLxTAYBuAgivfVUYqD4FBN0qRJBgc5eBdcVMQlpLkcom1TkxbUX28PPSi4OCWE5_vI-wKwh-AxgqI46WLorW9P5l8eIrwCNhEjKIeoIKs_d1xugK2UXiHEJUNoHWwgygSkDG-C0_N27ltro2_nmWpN5oZW9z60qs5804TK1_5LLR6y4LLQ-eBNFq22XR9i2gFrTtXJ7i7PbfB4cf4wu8rv7i-vZ2d3uSac97l1pWAlVkYZQTEysHIMa1VSJESFsdGaFdBoUlpUOu5owXlREQ0NQ8IZRYttcDjtHeO-Dzb1svFJ27pWrQ1DkiVjXBDC_oWI8fEriIzw4A98DUMcUyeJMSWCU75AxxPSMaQUrZNd9I2KnxJBuahfLuuXU_3jwP5y61A11vzyZd8jOJpAGLr_l-WT9am3Hz9axbcxb8GovHp-GQM9wdub2ZOcFd_JvKCO</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Ott, David</creator><creator>Neldner, Yvonne</creator><creator>Cèbe, Régis</creator><creator>Dodevski, Igor</creator><creator>Plückthun, Andreas</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Engineering and functional immobilization of opioid receptors</title><author>Ott, David ; Neldner, Yvonne ; Cèbe, Régis ; Dodevski, Igor ; Plückthun, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-ef69762adad9521d0bf72ca65199b22dcc730dc46e16f8f53883b4c0d719fda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Blotting, Western</topic><topic>Cell Line</topic><topic>Detergents - pharmacology</topic><topic>Dose-Response Relationship, Drug</topic><topic>functional immobilization</topic><topic>Genetic Variation</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Ligands</topic><topic>Lipid Bilayers</topic><topic>Magnetics</topic><topic>Molecular Sequence Data</topic><topic>opioid receptors</topic><topic>Protein Binding</topic><topic>Protein Engineering - methods</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins - chemistry</topic><topic>Receptors, Opioid - chemistry</topic><topic>Receptors, Opioid, kappa - chemistry</topic><topic>Receptors, Opioid, mu - chemistry</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Sequence Homology, Amino Acid</topic><topic>Transfection</topic><topic>μ-opioid receptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ott, David</creatorcontrib><creatorcontrib>Neldner, Yvonne</creatorcontrib><creatorcontrib>Cèbe, Régis</creatorcontrib><creatorcontrib>Dodevski, Igor</creatorcontrib><creatorcontrib>Plückthun, Andreas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Protein engineering, design and selection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ott, David</au><au>Neldner, Yvonne</au><au>Cèbe, Régis</au><au>Dodevski, Igor</au><au>Plückthun, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering and functional immobilization of opioid receptors</atitle><jtitle>Protein engineering, design and selection</jtitle><stitle>Protein Engineering, Design and Selection</stitle><addtitle>Protein Engineering, Design and Selection</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>18</volume><issue>3</issue><spage>153</spage><epage>160</epage><pages>153-160</pages><issn>1741-0126</issn><eissn>1741-0134</eissn><abstract>Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the μ-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable κ-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type μ-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCRs.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15790572</pmid><doi>10.1093/protein/gzi012</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-0126 |
ispartof | Protein engineering, design and selection, 2005-03, Vol.18 (3), p.153-160 |
issn | 1741-0126 1741-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_67789447 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | Amino Acid Sequence Blotting, Western Cell Line Detergents - pharmacology Dose-Response Relationship, Drug functional immobilization Genetic Variation Humans Immunoprecipitation Ligands Lipid Bilayers Magnetics Molecular Sequence Data opioid receptors Protein Binding Protein Engineering - methods Protein Structure, Tertiary Proteins - chemistry Receptors, Opioid - chemistry Receptors, Opioid, kappa - chemistry Receptors, Opioid, mu - chemistry Recombinant Fusion Proteins - chemistry Sequence Homology, Amino Acid Transfection μ-opioid receptor |
title | Engineering and functional immobilization of opioid receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20and%20functional%20immobilization%20of%20opioid%20receptors&rft.jtitle=Protein%20engineering,%20design%20and%20selection&rft.au=Ott,%20David&rft.date=2005-03-01&rft.volume=18&rft.issue=3&rft.spage=153&rft.epage=160&rft.pages=153-160&rft.issn=1741-0126&rft.eissn=1741-0134&rft_id=info:doi/10.1093/protein/gzi012&rft_dat=%3Cproquest_cross%3E17869714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=225498584&rft_id=info:pmid/15790572&rft_oup_id=10.1093/protein/gzi012&rfr_iscdi=true |