Nanotechnology: high-speed integrated nanowire circuits

Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2005-04, Vol.434 (7037), p.1085-1085
Hauptverfasser: Friedman, Robin S, McAlpine, Michael C, Ricketts, David S, Ham, Donhee, Lieber, Charles M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1085
container_issue 7037
container_start_page 1085
container_title Nature (London)
container_volume 434
creator Friedman, Robin S
McAlpine, Michael C
Ricketts, David S
Ham, Donhee
Lieber, Charles M
description Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.
doi_str_mv 10.1038/4341085a
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67788612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185471266</galeid><sourcerecordid>A185471266</sourcerecordid><originalsourceid>FETCH-LOGICAL-g298t-e755c5ea06f652d444e3cf7647a3b37e94e637e7397d12717f65bea5c92b6b7e3</originalsourceid><addsrcrecordid>eNp10UtLw0AQAOBFFFur4C-Q4kEQSd3NPuutFB8FqaAVj2GzmaQradJmN2j_vQutYKEyhxmGb-Ywg9A5wQOCqbpllBGsuD5AXcKkiJhQ8hB1MY5VhBUVHXTi3CfGmBPJjlGHcBVCxF0kp7qqPZh5VZd1sb7rz20xj9wSIOvbykPRaB_KKqgv20Df2Ma01rtTdJTr0sHZNvfQ-8P9bPwUPb88Tsaj56iIh8pHIDk3HDQWueBxxhgDanIpmNQ0pRKGDERIkg5lRmJJZGApaG6GcSpSCbSHrjZ7l029asH5ZGGdgbLUFdStS4SUSgkSBxhtYKFLSGyV177RpoAKGl3WFeQ2tEdEcSZJLETwl3u8WdpV8hcN9qAQGSys2bv1emcgGA_fvtCtc8nk7XXX3vxvR7OP8XRXX2wP0aYLyJJlYxe6WSe_r6Q_xgyakA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67788612</pqid></control><display><type>article</type><title>Nanotechnology: high-speed integrated nanowire circuits</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Friedman, Robin S ; McAlpine, Michael C ; Ricketts, David S ; Ham, Donhee ; Lieber, Charles M</creator><creatorcontrib>Friedman, Robin S ; McAlpine, Michael C ; Ricketts, David S ; Ham, Donhee ; Lieber, Charles M</creatorcontrib><description>Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/4341085a</identifier><identifier>PMID: 15858562</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><ispartof>Nature (London), 2005-04, Vol.434 (7037), p.1085-1085</ispartof><rights>COPYRIGHT 2005 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15858562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedman, Robin S</creatorcontrib><creatorcontrib>McAlpine, Michael C</creatorcontrib><creatorcontrib>Ricketts, David S</creatorcontrib><creatorcontrib>Ham, Donhee</creatorcontrib><creatorcontrib>Lieber, Charles M</creatorcontrib><title>Nanotechnology: high-speed integrated nanowire circuits</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.</description><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp10UtLw0AQAOBFFFur4C-Q4kEQSd3NPuutFB8FqaAVj2GzmaQradJmN2j_vQutYKEyhxmGb-Ywg9A5wQOCqbpllBGsuD5AXcKkiJhQ8hB1MY5VhBUVHXTi3CfGmBPJjlGHcBVCxF0kp7qqPZh5VZd1sb7rz20xj9wSIOvbykPRaB_KKqgv20Df2Ma01rtTdJTr0sHZNvfQ-8P9bPwUPb88Tsaj56iIh8pHIDk3HDQWueBxxhgDanIpmNQ0pRKGDERIkg5lRmJJZGApaG6GcSpSCbSHrjZ7l029asH5ZGGdgbLUFdStS4SUSgkSBxhtYKFLSGyV177RpoAKGl3WFeQ2tEdEcSZJLETwl3u8WdpV8hcN9qAQGSys2bv1emcgGA_fvtCtc8nk7XXX3vxvR7OP8XRXX2wP0aYLyJJlYxe6WSe_r6Q_xgyakA</recordid><startdate>20050428</startdate><enddate>20050428</enddate><creator>Friedman, Robin S</creator><creator>McAlpine, Michael C</creator><creator>Ricketts, David S</creator><creator>Ham, Donhee</creator><creator>Lieber, Charles M</creator><general>Nature Publishing Group</general><scope>NPM</scope><scope>ATWCN</scope><scope>7X8</scope></search><sort><creationdate>20050428</creationdate><title>Nanotechnology: high-speed integrated nanowire circuits</title><author>Friedman, Robin S ; McAlpine, Michael C ; Ricketts, David S ; Ham, Donhee ; Lieber, Charles M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g298t-e755c5ea06f652d444e3cf7647a3b37e94e637e7397d12717f65bea5c92b6b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Robin S</creatorcontrib><creatorcontrib>McAlpine, Michael C</creatorcontrib><creatorcontrib>Ricketts, David S</creatorcontrib><creatorcontrib>Ham, Donhee</creatorcontrib><creatorcontrib>Lieber, Charles M</creatorcontrib><collection>PubMed</collection><collection>Gale In Context: Middle School</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedman, Robin S</au><au>McAlpine, Michael C</au><au>Ricketts, David S</au><au>Ham, Donhee</au><au>Lieber, Charles M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotechnology: high-speed integrated nanowire circuits</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2005-04-28</date><risdate>2005</risdate><volume>434</volume><issue>7037</issue><spage>1085</spage><epage>1085</epage><pages>1085-1085</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>15858562</pmid><doi>10.1038/4341085a</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2005-04, Vol.434 (7037), p.1085-1085
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_67788612
source Springer Nature - Complete Springer Journals; Nature
title Nanotechnology: high-speed integrated nanowire circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotechnology:%20high-speed%20integrated%20nanowire%20circuits&rft.jtitle=Nature%20(London)&rft.au=Friedman,%20Robin%20S&rft.date=2005-04-28&rft.volume=434&rft.issue=7037&rft.spage=1085&rft.epage=1085&rft.pages=1085-1085&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/4341085a&rft_dat=%3Cgale_proqu%3EA185471266%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67788612&rft_id=info:pmid/15858562&rft_galeid=A185471266&rfr_iscdi=true