Slowed diffusion in tumors revealed by microfiberoptic epifluorescence photobleaching

It has not been possible to measure diffusion deep in solid tissues such as tumors because of the limited light penetration of conventional optical techniques. Here we report a microfiberoptic epifluorescence photobleaching (MFEP) method in which photobleaching is done by laser epi-illumination thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2006-04, Vol.3 (4), p.275-280
Hauptverfasser: Verkman, A S, Thiagarajah, Jay R, Kim, Jung Kyung, Magzoub, Mazin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has not been possible to measure diffusion deep in solid tissues such as tumors because of the limited light penetration of conventional optical techniques. Here we report a microfiberoptic epifluorescence photobleaching (MFEP) method in which photobleaching is done by laser epi-illumination through a multimode fiberoptic whose micron-sized tip can be introduced deep into tissues. We applied MFEP to measure the diffusion of fluorescent macromolecules in tumors in living mice, at depths well beyond those accessible by surface optical measurements. Macromolecule diffusion was slowed about twofold within 200 μm of the surface of a solid tumor, but was slowed greater than tenfold beyond 500 μm. Our results reveal a remarkable and previously unrecognized slowing of diffusion deep in tumors, which correlated with the differing tissue architectures of tumor periphery versus core, and with altered tumor vasculature produced by aquaporin-1 deletion. MFEP should have wide applications for measuring diffusion in organs, solid tumors and other light-inaccessible tissue masses.
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth863