SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons
Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates A...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2006-03, Vol.103 (12), p.4344-4351 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4351 |
---|---|
container_issue | 12 |
container_start_page | 4344 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Rumbaugh, Gavin Adams, J. Paige Kim, Jee H. Huganir, Richard L. |
description | Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission. |
doi_str_mv | 10.1073/pnas.0600084103 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67773705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048943</jstor_id><sourcerecordid>30048943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</originalsourceid><addsrcrecordid>eNqF0UFv0zAUB3ALMbEyOHMCckJcsj3HL3F8mVRVMNAGTAxuSJYTO52n1C62M7Fvj6tW63aBky2_33t61p-QVxSOKXB2snYqHkMDAC1SYE_IjIKgZYMCnpIZQMXLFis8JM9jvMlK1C08I4e0qRlHaGbk19WdO5tfFt_NchpVMrHID2qdbF9cpWDcMl0Xyunii01-aVw575O9zU4Xl8EnY11xbvMOuS9fF9OYppBrX80UvIsvyMGgxmhe7s4j8vPjhx-LT-XFt7PPi_lF2dcNT6XWlDVKiQ4V1lyghrbraCsUcKOFBoO0R0DRKT4gHYTQg1Gam3rAVms9sCNyup27nrqV0b1xKahRroNdqXAnvbLyccXZa7n0t5JiDZSzPODdbkDwvycTk1zZ2JtxVM74KcqGc8441P-FlNOK8opneLKFffAxBjPcb0NBbqKTm-jkPrrc8ebhJ_Z-l1UG73dg07kfxyStJDJEOUzjmMyflOnbf9MsXm_FTUw-3BMGgK1Axv4Cq6C5FQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17121727</pqid></control><display><type>article</type><title>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rumbaugh, Gavin ; Adams, J. Paige ; Kim, Jee H. ; Huganir, Richard L.</creator><creatorcontrib>Rumbaugh, Gavin ; Adams, J. Paige ; Kim, Jee H. ; Huganir, Richard L.</creatorcontrib><description>Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0600084103</identifier><identifier>PMID: 16537406</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; Cells, Cultured ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Gene expression regulation ; Long term potentiation ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinases - metabolism ; Mutation ; N methyl D aspartate receptors ; Neurons ; Neurons - chemistry ; Neurons - enzymology ; Neurons - physiology ; Neuroscience ; p38 Mitogen-Activated Protein Kinases - metabolism ; Physiological regulation ; Protein Transport ; ras GTPase-Activating Proteins - analysis ; ras GTPase-Activating Proteins - genetics ; ras GTPase-Activating Proteins - physiology ; Rats ; Receptors, AMPA - metabolism ; Small interfering RNA ; Synapses ; Synapses - metabolism ; Synapses - physiology ; Synaptic Transmission</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (12), p.4344-4351</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</citedby><cites>FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048943$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048943$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16537406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><creatorcontrib>Adams, J. Paige</creatorcontrib><creatorcontrib>Kim, Jee H.</creatorcontrib><creatorcontrib>Huganir, Richard L.</creatorcontrib><title>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cells, Cultured</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Gene expression regulation</subject><subject>Long term potentiation</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mutation</subject><subject>N methyl D aspartate receptors</subject><subject>Neurons</subject><subject>Neurons - chemistry</subject><subject>Neurons - enzymology</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Physiological regulation</subject><subject>Protein Transport</subject><subject>ras GTPase-Activating Proteins - analysis</subject><subject>ras GTPase-Activating Proteins - genetics</subject><subject>ras GTPase-Activating Proteins - physiology</subject><subject>Rats</subject><subject>Receptors, AMPA - metabolism</subject><subject>Small interfering RNA</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFv0zAUB3ALMbEyOHMCckJcsj3HL3F8mVRVMNAGTAxuSJYTO52n1C62M7Fvj6tW63aBky2_33t61p-QVxSOKXB2snYqHkMDAC1SYE_IjIKgZYMCnpIZQMXLFis8JM9jvMlK1C08I4e0qRlHaGbk19WdO5tfFt_NchpVMrHID2qdbF9cpWDcMl0Xyunii01-aVw575O9zU4Xl8EnY11xbvMOuS9fF9OYppBrX80UvIsvyMGgxmhe7s4j8vPjhx-LT-XFt7PPi_lF2dcNT6XWlDVKiQ4V1lyghrbraCsUcKOFBoO0R0DRKT4gHYTQg1Gam3rAVms9sCNyup27nrqV0b1xKahRroNdqXAnvbLyccXZa7n0t5JiDZSzPODdbkDwvycTk1zZ2JtxVM74KcqGc8441P-FlNOK8opneLKFffAxBjPcb0NBbqKTm-jkPrrc8ebhJ_Z-l1UG73dg07kfxyStJDJEOUzjmMyflOnbf9MsXm_FTUw-3BMGgK1Axv4Cq6C5FQ</recordid><startdate>20060321</startdate><enddate>20060321</enddate><creator>Rumbaugh, Gavin</creator><creator>Adams, J. Paige</creator><creator>Kim, Jee H.</creator><creator>Huganir, Richard L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060321</creationdate><title>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</title><author>Rumbaugh, Gavin ; Adams, J. Paige ; Kim, Jee H. ; Huganir, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cells, Cultured</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Gene expression regulation</topic><topic>Long term potentiation</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mutation</topic><topic>N methyl D aspartate receptors</topic><topic>Neurons</topic><topic>Neurons - chemistry</topic><topic>Neurons - enzymology</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Physiological regulation</topic><topic>Protein Transport</topic><topic>ras GTPase-Activating Proteins - analysis</topic><topic>ras GTPase-Activating Proteins - genetics</topic><topic>ras GTPase-Activating Proteins - physiology</topic><topic>Rats</topic><topic>Receptors, AMPA - metabolism</topic><topic>Small interfering RNA</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><creatorcontrib>Adams, J. Paige</creatorcontrib><creatorcontrib>Kim, Jee H.</creatorcontrib><creatorcontrib>Huganir, Richard L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumbaugh, Gavin</au><au>Adams, J. Paige</au><au>Kim, Jee H.</au><au>Huganir, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-03-21</date><risdate>2006</risdate><volume>103</volume><issue>12</issue><spage>4344</spage><epage>4351</epage><pages>4344-4351</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16537406</pmid><doi>10.1073/pnas.0600084103</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (12), p.4344-4351 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_67773705 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Antibodies Biological Sciences Cells, Cultured Extracellular Signal-Regulated MAP Kinases - metabolism Gene expression regulation Long term potentiation Mice Mice, Knockout Mitogen-Activated Protein Kinases - metabolism Mutation N methyl D aspartate receptors Neurons Neurons - chemistry Neurons - enzymology Neurons - physiology Neuroscience p38 Mitogen-Activated Protein Kinases - metabolism Physiological regulation Protein Transport ras GTPase-Activating Proteins - analysis ras GTPase-Activating Proteins - genetics ras GTPase-Activating Proteins - physiology Rats Receptors, AMPA - metabolism Small interfering RNA Synapses Synapses - metabolism Synapses - physiology Synaptic Transmission |
title | SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SynGAP%20Regulates%20Synaptic%20Strength%20and%20Mitogen-Activated%20Protein%20Kinases%20in%20Cultured%20Neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rumbaugh,%20Gavin&rft.date=2006-03-21&rft.volume=103&rft.issue=12&rft.spage=4344&rft.epage=4351&rft.pages=4344-4351&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0600084103&rft_dat=%3Cjstor_proqu%3E30048943%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17121727&rft_id=info:pmid/16537406&rft_jstor_id=30048943&rfr_iscdi=true |