SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons

Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-03, Vol.103 (12), p.4344-4351
Hauptverfasser: Rumbaugh, Gavin, Adams, J. Paige, Kim, Jee H., Huganir, Richard L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4351
container_issue 12
container_start_page 4344
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Rumbaugh, Gavin
Adams, J. Paige
Kim, Jee H.
Huganir, Richard L.
description Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.
doi_str_mv 10.1073/pnas.0600084103
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67773705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048943</jstor_id><sourcerecordid>30048943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</originalsourceid><addsrcrecordid>eNqF0UFv0zAUB3ALMbEyOHMCckJcsj3HL3F8mVRVMNAGTAxuSJYTO52n1C62M7Fvj6tW63aBky2_33t61p-QVxSOKXB2snYqHkMDAC1SYE_IjIKgZYMCnpIZQMXLFis8JM9jvMlK1C08I4e0qRlHaGbk19WdO5tfFt_NchpVMrHID2qdbF9cpWDcMl0Xyunii01-aVw575O9zU4Xl8EnY11xbvMOuS9fF9OYppBrX80UvIsvyMGgxmhe7s4j8vPjhx-LT-XFt7PPi_lF2dcNT6XWlDVKiQ4V1lyghrbraCsUcKOFBoO0R0DRKT4gHYTQg1Gam3rAVms9sCNyup27nrqV0b1xKahRroNdqXAnvbLyccXZa7n0t5JiDZSzPODdbkDwvycTk1zZ2JtxVM74KcqGc8441P-FlNOK8opneLKFffAxBjPcb0NBbqKTm-jkPrrc8ebhJ_Z-l1UG73dg07kfxyStJDJEOUzjmMyflOnbf9MsXm_FTUw-3BMGgK1Axv4Cq6C5FQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17121727</pqid></control><display><type>article</type><title>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rumbaugh, Gavin ; Adams, J. Paige ; Kim, Jee H. ; Huganir, Richard L.</creator><creatorcontrib>Rumbaugh, Gavin ; Adams, J. Paige ; Kim, Jee H. ; Huganir, Richard L.</creatorcontrib><description>Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0600084103</identifier><identifier>PMID: 16537406</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; Cells, Cultured ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Gene expression regulation ; Long term potentiation ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinases - metabolism ; Mutation ; N methyl D aspartate receptors ; Neurons ; Neurons - chemistry ; Neurons - enzymology ; Neurons - physiology ; Neuroscience ; p38 Mitogen-Activated Protein Kinases - metabolism ; Physiological regulation ; Protein Transport ; ras GTPase-Activating Proteins - analysis ; ras GTPase-Activating Proteins - genetics ; ras GTPase-Activating Proteins - physiology ; Rats ; Receptors, AMPA - metabolism ; Small interfering RNA ; Synapses ; Synapses - metabolism ; Synapses - physiology ; Synaptic Transmission</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (12), p.4344-4351</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</citedby><cites>FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048943$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048943$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16537406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><creatorcontrib>Adams, J. Paige</creatorcontrib><creatorcontrib>Kim, Jee H.</creatorcontrib><creatorcontrib>Huganir, Richard L.</creatorcontrib><title>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cells, Cultured</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Gene expression regulation</subject><subject>Long term potentiation</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mutation</subject><subject>N methyl D aspartate receptors</subject><subject>Neurons</subject><subject>Neurons - chemistry</subject><subject>Neurons - enzymology</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Physiological regulation</subject><subject>Protein Transport</subject><subject>ras GTPase-Activating Proteins - analysis</subject><subject>ras GTPase-Activating Proteins - genetics</subject><subject>ras GTPase-Activating Proteins - physiology</subject><subject>Rats</subject><subject>Receptors, AMPA - metabolism</subject><subject>Small interfering RNA</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFv0zAUB3ALMbEyOHMCckJcsj3HL3F8mVRVMNAGTAxuSJYTO52n1C62M7Fvj6tW63aBky2_33t61p-QVxSOKXB2snYqHkMDAC1SYE_IjIKgZYMCnpIZQMXLFis8JM9jvMlK1C08I4e0qRlHaGbk19WdO5tfFt_NchpVMrHID2qdbF9cpWDcMl0Xyunii01-aVw575O9zU4Xl8EnY11xbvMOuS9fF9OYppBrX80UvIsvyMGgxmhe7s4j8vPjhx-LT-XFt7PPi_lF2dcNT6XWlDVKiQ4V1lyghrbraCsUcKOFBoO0R0DRKT4gHYTQg1Gam3rAVms9sCNyup27nrqV0b1xKahRroNdqXAnvbLyccXZa7n0t5JiDZSzPODdbkDwvycTk1zZ2JtxVM74KcqGc8441P-FlNOK8opneLKFffAxBjPcb0NBbqKTm-jkPrrc8ebhJ_Z-l1UG73dg07kfxyStJDJEOUzjmMyflOnbf9MsXm_FTUw-3BMGgK1Axv4Cq6C5FQ</recordid><startdate>20060321</startdate><enddate>20060321</enddate><creator>Rumbaugh, Gavin</creator><creator>Adams, J. Paige</creator><creator>Kim, Jee H.</creator><creator>Huganir, Richard L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060321</creationdate><title>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</title><author>Rumbaugh, Gavin ; Adams, J. Paige ; Kim, Jee H. ; Huganir, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-dd136aa9b4a45794d08bb189a07ed9d0e41c4049ba7f41f99dfead7e5f48dddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cells, Cultured</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Gene expression regulation</topic><topic>Long term potentiation</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mutation</topic><topic>N methyl D aspartate receptors</topic><topic>Neurons</topic><topic>Neurons - chemistry</topic><topic>Neurons - enzymology</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Physiological regulation</topic><topic>Protein Transport</topic><topic>ras GTPase-Activating Proteins - analysis</topic><topic>ras GTPase-Activating Proteins - genetics</topic><topic>ras GTPase-Activating Proteins - physiology</topic><topic>Rats</topic><topic>Receptors, AMPA - metabolism</topic><topic>Small interfering RNA</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><creatorcontrib>Adams, J. Paige</creatorcontrib><creatorcontrib>Kim, Jee H.</creatorcontrib><creatorcontrib>Huganir, Richard L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumbaugh, Gavin</au><au>Adams, J. Paige</au><au>Kim, Jee H.</au><au>Huganir, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-03-21</date><risdate>2006</risdate><volume>103</volume><issue>12</issue><spage>4344</spage><epage>4351</epage><pages>4344-4351</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Silent synapses, or excitatory synapses that lack functional a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signalregulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16537406</pmid><doi>10.1073/pnas.0600084103</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (12), p.4344-4351
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_67773705
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Antibodies
Biological Sciences
Cells, Cultured
Extracellular Signal-Regulated MAP Kinases - metabolism
Gene expression regulation
Long term potentiation
Mice
Mice, Knockout
Mitogen-Activated Protein Kinases - metabolism
Mutation
N methyl D aspartate receptors
Neurons
Neurons - chemistry
Neurons - enzymology
Neurons - physiology
Neuroscience
p38 Mitogen-Activated Protein Kinases - metabolism
Physiological regulation
Protein Transport
ras GTPase-Activating Proteins - analysis
ras GTPase-Activating Proteins - genetics
ras GTPase-Activating Proteins - physiology
Rats
Receptors, AMPA - metabolism
Small interfering RNA
Synapses
Synapses - metabolism
Synapses - physiology
Synaptic Transmission
title SynGAP Regulates Synaptic Strength and Mitogen-Activated Protein Kinases in Cultured Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SynGAP%20Regulates%20Synaptic%20Strength%20and%20Mitogen-Activated%20Protein%20Kinases%20in%20Cultured%20Neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rumbaugh,%20Gavin&rft.date=2006-03-21&rft.volume=103&rft.issue=12&rft.spage=4344&rft.epage=4351&rft.pages=4344-4351&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0600084103&rft_dat=%3Cjstor_proqu%3E30048943%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17121727&rft_id=info:pmid/16537406&rft_jstor_id=30048943&rfr_iscdi=true