Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis

This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2006-04, Vol.19 (2), p.188-197
Hauptverfasser: Pels, Pieter, Ozturk-Isik, Esin, Swanson, Mark G., Vanhamme, Leentje, Kurhanewicz, John, Nelson, Sarah J., Huffel, Sabine Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 2
container_start_page 188
container_title NMR in biomedicine
container_volume 19
creator Pels, Pieter
Ozturk-Isik, Esin
Swanson, Mark G.
Vanhamme, Leentje
Kurhanewicz, John
Nelson, Sarah J.
Huffel, Sabine Van
description This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nbm.1008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67771391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67771391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</originalsourceid><addsrcrecordid>eNqF0Mtu1DAUBmALgdqhVOIJKq8Qm4AvSWwv6QBtUTsVUMTSOvGlckmcEnsEeXs8mlBWqCsfyZ9-nfMj9JKSN5QQ9jZ2w26QT9CKEqUqWiv2FK2IaljFa0kO0fOU7kgRNWcH6JC2NaVMkhVyn7cQc_DBQA5jxKPH99OYMmSHr758vcAWMuBuxsNoXV91kJzFOQwO23GAELEPOYd4iyFa7Cf3c-uimf9-QoR-TiG9QM889MkdL-8R-vbxw836vLq8PrtYv7usDJdSVq13jRC1Ib7pLGHKOs-tZaRVlDgpDQduwVNBjewYWCG9EVKwmhbrlRL8CL3a55YbyiYp6yEk4_oeohu3SbdCCMoVfRQySlpJm13i6z00pZU0Oa_vpzDANGtK9K57XbrfDbLQkyVz2w3O_oNL2QVUe_Ar9G7-b5DenF4tgYsPKbvfDx6mH-UQLhr9fXOm1-83n85Pb9aa8z-qpZyd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21068157</pqid></control><display><type>article</type><title>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pels, Pieter ; Ozturk-Isik, Esin ; Swanson, Mark G. ; Vanhamme, Leentje ; Kurhanewicz, John ; Nelson, Sarah J. ; Huffel, Sabine Van</creator><creatorcontrib>Pels, Pieter ; Ozturk-Isik, Esin ; Swanson, Mark G. ; Vanhamme, Leentje ; Kurhanewicz, John ; Nelson, Sarah J. ; Huffel, Sabine Van</creatorcontrib><description>This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.1008</identifier><identifier>PMID: 16411280</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Biomarkers, Tumor - analysis ; choline ; citrate ; Computer Simulation ; Databases, Factual ; Diagnosis, Computer-Assisted - instrumentation ; Diagnosis, Computer-Assisted - methods ; Fourier Analysis ; frequency domain ; Humans ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Male ; Models, Biological ; MR spectroscopy ; Phantoms, Imaging ; polyamines ; prostate cancer ; Prostatic Neoplasms - diagnosis ; Prostatic Neoplasms - metabolism ; quantification ; Reproducibility of Results ; Sensitivity and Specificity ; time domain ; Time Factors</subject><ispartof>NMR in biomedicine, 2006-04, Vol.19 (2), p.188-197</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</citedby><cites>FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.1008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.1008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16411280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pels, Pieter</creatorcontrib><creatorcontrib>Ozturk-Isik, Esin</creatorcontrib><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Vanhamme, Leentje</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><creatorcontrib>Nelson, Sarah J.</creatorcontrib><creatorcontrib>Huffel, Sabine Van</creatorcontrib><title>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Biomarkers, Tumor - analysis</subject><subject>choline</subject><subject>citrate</subject><subject>Computer Simulation</subject><subject>Databases, Factual</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Fourier Analysis</subject><subject>frequency domain</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Models, Biological</subject><subject>MR spectroscopy</subject><subject>Phantoms, Imaging</subject><subject>polyamines</subject><subject>prostate cancer</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>quantification</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>time domain</subject><subject>Time Factors</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Mtu1DAUBmALgdqhVOIJKq8Qm4AvSWwv6QBtUTsVUMTSOvGlckmcEnsEeXs8mlBWqCsfyZ9-nfMj9JKSN5QQ9jZ2w26QT9CKEqUqWiv2FK2IaljFa0kO0fOU7kgRNWcH6JC2NaVMkhVyn7cQc_DBQA5jxKPH99OYMmSHr758vcAWMuBuxsNoXV91kJzFOQwO23GAELEPOYd4iyFa7Cf3c-uimf9-QoR-TiG9QM889MkdL-8R-vbxw836vLq8PrtYv7usDJdSVq13jRC1Ib7pLGHKOs-tZaRVlDgpDQduwVNBjewYWCG9EVKwmhbrlRL8CL3a55YbyiYp6yEk4_oeohu3SbdCCMoVfRQySlpJm13i6z00pZU0Oa_vpzDANGtK9K57XbrfDbLQkyVz2w3O_oNL2QVUe_Ar9G7-b5DenF4tgYsPKbvfDx6mH-UQLhr9fXOm1-83n85Pb9aa8z-qpZyd</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Pels, Pieter</creator><creator>Ozturk-Isik, Esin</creator><creator>Swanson, Mark G.</creator><creator>Vanhamme, Leentje</creator><creator>Kurhanewicz, John</creator><creator>Nelson, Sarah J.</creator><creator>Huffel, Sabine Van</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200604</creationdate><title>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</title><author>Pels, Pieter ; Ozturk-Isik, Esin ; Swanson, Mark G. ; Vanhamme, Leentje ; Kurhanewicz, John ; Nelson, Sarah J. ; Huffel, Sabine Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biomarkers, Tumor - analysis</topic><topic>choline</topic><topic>citrate</topic><topic>Computer Simulation</topic><topic>Databases, Factual</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Fourier Analysis</topic><topic>frequency domain</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Models, Biological</topic><topic>MR spectroscopy</topic><topic>Phantoms, Imaging</topic><topic>polyamines</topic><topic>prostate cancer</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>quantification</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>time domain</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pels, Pieter</creatorcontrib><creatorcontrib>Ozturk-Isik, Esin</creatorcontrib><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Vanhamme, Leentje</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><creatorcontrib>Nelson, Sarah J.</creatorcontrib><creatorcontrib>Huffel, Sabine Van</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pels, Pieter</au><au>Ozturk-Isik, Esin</au><au>Swanson, Mark G.</au><au>Vanhamme, Leentje</au><au>Kurhanewicz, John</au><au>Nelson, Sarah J.</au><au>Huffel, Sabine Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2006-04</date><risdate>2006</risdate><volume>19</volume><issue>2</issue><spage>188</spage><epage>197</epage><pages>188-197</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>16411280</pmid><doi>10.1002/nbm.1008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2006-04, Vol.19 (2), p.188-197
issn 0952-3480
1099-1492
language eng
recordid cdi_proquest_miscellaneous_67771391
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Biomarkers, Tumor - analysis
choline
citrate
Computer Simulation
Databases, Factual
Diagnosis, Computer-Assisted - instrumentation
Diagnosis, Computer-Assisted - methods
Fourier Analysis
frequency domain
Humans
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
Male
Models, Biological
MR spectroscopy
Phantoms, Imaging
polyamines
prostate cancer
Prostatic Neoplasms - diagnosis
Prostatic Neoplasms - metabolism
quantification
Reproducibility of Results
Sensitivity and Specificity
time domain
Time Factors
title Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20prostate%20MRSI%20data%20by%20model-based%20time%20domain%20fitting%20and%20frequency%20domain%20analysis&rft.jtitle=NMR%20in%20biomedicine&rft.au=Pels,%20Pieter&rft.date=2006-04&rft.volume=19&rft.issue=2&rft.spage=188&rft.epage=197&rft.pages=188-197&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.1008&rft_dat=%3Cproquest_cross%3E67771391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21068157&rft_id=info:pmid/16411280&rfr_iscdi=true