Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis
This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a...
Gespeichert in:
Veröffentlicht in: | NMR in biomedicine 2006-04, Vol.19 (2), p.188-197 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 2 |
container_start_page | 188 |
container_title | NMR in biomedicine |
container_volume | 19 |
creator | Pels, Pieter Ozturk-Isik, Esin Swanson, Mark G. Vanhamme, Leentje Kurhanewicz, John Nelson, Sarah J. Huffel, Sabine Van |
description | This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nbm.1008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67771391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67771391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</originalsourceid><addsrcrecordid>eNqF0Mtu1DAUBmALgdqhVOIJKq8Qm4AvSWwv6QBtUTsVUMTSOvGlckmcEnsEeXs8mlBWqCsfyZ9-nfMj9JKSN5QQ9jZ2w26QT9CKEqUqWiv2FK2IaljFa0kO0fOU7kgRNWcH6JC2NaVMkhVyn7cQc_DBQA5jxKPH99OYMmSHr758vcAWMuBuxsNoXV91kJzFOQwO23GAELEPOYd4iyFa7Cf3c-uimf9-QoR-TiG9QM889MkdL-8R-vbxw836vLq8PrtYv7usDJdSVq13jRC1Ib7pLGHKOs-tZaRVlDgpDQduwVNBjewYWCG9EVKwmhbrlRL8CL3a55YbyiYp6yEk4_oeohu3SbdCCMoVfRQySlpJm13i6z00pZU0Oa_vpzDANGtK9K57XbrfDbLQkyVz2w3O_oNL2QVUe_Ar9G7-b5DenF4tgYsPKbvfDx6mH-UQLhr9fXOm1-83n85Pb9aa8z-qpZyd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21068157</pqid></control><display><type>article</type><title>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pels, Pieter ; Ozturk-Isik, Esin ; Swanson, Mark G. ; Vanhamme, Leentje ; Kurhanewicz, John ; Nelson, Sarah J. ; Huffel, Sabine Van</creator><creatorcontrib>Pels, Pieter ; Ozturk-Isik, Esin ; Swanson, Mark G. ; Vanhamme, Leentje ; Kurhanewicz, John ; Nelson, Sarah J. ; Huffel, Sabine Van</creatorcontrib><description>This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.1008</identifier><identifier>PMID: 16411280</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Biomarkers, Tumor - analysis ; choline ; citrate ; Computer Simulation ; Databases, Factual ; Diagnosis, Computer-Assisted - instrumentation ; Diagnosis, Computer-Assisted - methods ; Fourier Analysis ; frequency domain ; Humans ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Male ; Models, Biological ; MR spectroscopy ; Phantoms, Imaging ; polyamines ; prostate cancer ; Prostatic Neoplasms - diagnosis ; Prostatic Neoplasms - metabolism ; quantification ; Reproducibility of Results ; Sensitivity and Specificity ; time domain ; Time Factors</subject><ispartof>NMR in biomedicine, 2006-04, Vol.19 (2), p.188-197</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</citedby><cites>FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.1008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.1008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16411280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pels, Pieter</creatorcontrib><creatorcontrib>Ozturk-Isik, Esin</creatorcontrib><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Vanhamme, Leentje</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><creatorcontrib>Nelson, Sarah J.</creatorcontrib><creatorcontrib>Huffel, Sabine Van</creatorcontrib><title>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Biomarkers, Tumor - analysis</subject><subject>choline</subject><subject>citrate</subject><subject>Computer Simulation</subject><subject>Databases, Factual</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Fourier Analysis</subject><subject>frequency domain</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Models, Biological</subject><subject>MR spectroscopy</subject><subject>Phantoms, Imaging</subject><subject>polyamines</subject><subject>prostate cancer</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>quantification</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>time domain</subject><subject>Time Factors</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Mtu1DAUBmALgdqhVOIJKq8Qm4AvSWwv6QBtUTsVUMTSOvGlckmcEnsEeXs8mlBWqCsfyZ9-nfMj9JKSN5QQ9jZ2w26QT9CKEqUqWiv2FK2IaljFa0kO0fOU7kgRNWcH6JC2NaVMkhVyn7cQc_DBQA5jxKPH99OYMmSHr758vcAWMuBuxsNoXV91kJzFOQwO23GAELEPOYd4iyFa7Cf3c-uimf9-QoR-TiG9QM889MkdL-8R-vbxw836vLq8PrtYv7usDJdSVq13jRC1Ib7pLGHKOs-tZaRVlDgpDQduwVNBjewYWCG9EVKwmhbrlRL8CL3a55YbyiYp6yEk4_oeohu3SbdCCMoVfRQySlpJm13i6z00pZU0Oa_vpzDANGtK9K57XbrfDbLQkyVz2w3O_oNL2QVUe_Ar9G7-b5DenF4tgYsPKbvfDx6mH-UQLhr9fXOm1-83n85Pb9aa8z-qpZyd</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Pels, Pieter</creator><creator>Ozturk-Isik, Esin</creator><creator>Swanson, Mark G.</creator><creator>Vanhamme, Leentje</creator><creator>Kurhanewicz, John</creator><creator>Nelson, Sarah J.</creator><creator>Huffel, Sabine Van</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200604</creationdate><title>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</title><author>Pels, Pieter ; Ozturk-Isik, Esin ; Swanson, Mark G. ; Vanhamme, Leentje ; Kurhanewicz, John ; Nelson, Sarah J. ; Huffel, Sabine Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-6fe5774c0f5bd029def3dd206910e88c3a3daf171c8b2ad78fc787241029f9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biomarkers, Tumor - analysis</topic><topic>choline</topic><topic>citrate</topic><topic>Computer Simulation</topic><topic>Databases, Factual</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Fourier Analysis</topic><topic>frequency domain</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Models, Biological</topic><topic>MR spectroscopy</topic><topic>Phantoms, Imaging</topic><topic>polyamines</topic><topic>prostate cancer</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>quantification</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>time domain</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pels, Pieter</creatorcontrib><creatorcontrib>Ozturk-Isik, Esin</creatorcontrib><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Vanhamme, Leentje</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><creatorcontrib>Nelson, Sarah J.</creatorcontrib><creatorcontrib>Huffel, Sabine Van</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pels, Pieter</au><au>Ozturk-Isik, Esin</au><au>Swanson, Mark G.</au><au>Vanhamme, Leentje</au><au>Kurhanewicz, John</au><au>Nelson, Sarah J.</au><au>Huffel, Sabine Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2006-04</date><risdate>2006</risdate><volume>19</volume><issue>2</issue><spage>188</spage><epage>197</epage><pages>188-197</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>This paper compares two spectral processing methods for obtaining quantitative measures from in vivo prostate spectra, evaluates their effectiveness, and discusses the necessary modifications for accurate results. A frequency domain analysis (FDA) method based on peak integration was compared with a time domain fitting (TDF) method, a model‐based nonlinear least squares fitting algorithm. The accuracy of both methods at estimating the choline + creatine + polyamines to citrate ratio (CCP:C) was tested using Monte Carlo simulations, empirical phantom MRSI data and in vivo MRSI data. The paper discusses the different approaches employed to achieve the quantification of the overlapping choline, creatine and polyamine resonances. Monte Carlo simulations showed induced biases on the estimated CCP:C ratios. Both methods were successful in identifying tumor tissue, provided that the CCP:C ratio was greater than a given (normal) threshold. Both methods predicted the same voxel condition in 94% of the in vivo voxels (68 out of 72). Both TDF and FDA methods had the ability to identify malignant voxels in an artifact‐free case study using the estimated CCP:C ratio. Comparing the ratios estimated by the TDF and the FDA, the methods predicted the same spectrum type in 17 out of 18 voxels of the in vivo case study (94.4%). Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>16411280</pmid><doi>10.1002/nbm.1008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-3480 |
ispartof | NMR in biomedicine, 2006-04, Vol.19 (2), p.188-197 |
issn | 0952-3480 1099-1492 |
language | eng |
recordid | cdi_proquest_miscellaneous_67771391 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Biomarkers, Tumor - analysis choline citrate Computer Simulation Databases, Factual Diagnosis, Computer-Assisted - instrumentation Diagnosis, Computer-Assisted - methods Fourier Analysis frequency domain Humans Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Male Models, Biological MR spectroscopy Phantoms, Imaging polyamines prostate cancer Prostatic Neoplasms - diagnosis Prostatic Neoplasms - metabolism quantification Reproducibility of Results Sensitivity and Specificity time domain Time Factors |
title | Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20prostate%20MRSI%20data%20by%20model-based%20time%20domain%20fitting%20and%20frequency%20domain%20analysis&rft.jtitle=NMR%20in%20biomedicine&rft.au=Pels,%20Pieter&rft.date=2006-04&rft.volume=19&rft.issue=2&rft.spage=188&rft.epage=197&rft.pages=188-197&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.1008&rft_dat=%3Cproquest_cross%3E67771391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21068157&rft_id=info:pmid/16411280&rfr_iscdi=true |