Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia

Blood-related cancers, or leukemias, have been shown to arise from a rare subset of cells that escape normal regulation and drive the formation and growth of the tumor. The finding that these so-called cancer stem cells, or leukemic stem cells (LSC), can be purified away from the other cells in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Tex.), 2005-02, Vol.4 (2), p.266-268
1. Verfasser: Passegué, Emmanuelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 2
container_start_page 266
container_title Cell cycle (Georgetown, Tex.)
container_volume 4
creator Passegué, Emmanuelle
description Blood-related cancers, or leukemias, have been shown to arise from a rare subset of cells that escape normal regulation and drive the formation and growth of the tumor. The finding that these so-called cancer stem cells, or leukemic stem cells (LSC), can be purified away from the other cells in the tumor allows their precise analysis to identify candidate molecules and regulatory pathways that play a role in progression, maintenance, and spreading of leukemias. The analyses of the other, numerically dominant, cells in the tumor, while also interesting, do not directly interrogate these key properties of malignancies. Mouse models of human myeloproliferative disorder and acute myelogenous leukemia have highlighted the remarkable conservation of disease mechanisms between both species. They can now be used to identify the LSC for each type of human leukemia and understand how they escape normal regulation and become malignant. Given the clinical importance of LSC identification, the insights gained through these approaches will quickly translate into clinical applications and lead to improved treatments for human leukemias.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67769206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67769206</sourcerecordid><originalsourceid>FETCH-LOGICAL-p139t-39da63298aabe973f569b3b2bcd7c8ea3174fd387c057cbe8973a346240bd0763</originalsourceid><addsrcrecordid>eNpVkMFKxDAURYMgzjj6C9KVKwtJX5M0SxnUEQbd6Lq8JK9abZratIv5e2dwZuHqwuFwudwzthRSirzkXC7YZUpfnBeVNuKCLYRUUoIyS_ayoYBTHGJLU-uyNFHIHHVduss6mr8p_IMZ9j5zn2Ps9zjsqIsf1Mc5nVy8YucNdomuj7li748Pb-tNvn19el7fb_NBgJlyMB4VFKZCtGQ0NFIZC7awzmtXEYLQZeOh0o5L7SxVewehVEXJredawYrd_vUOY_yZKU11aNNhIva031MrrZUp-EG8OYqzDeTrYWwDjrv69AD8Am7lV0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67769206</pqid></control><display><type>article</type><title>Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Passegué, Emmanuelle</creator><creatorcontrib>Passegué, Emmanuelle</creatorcontrib><description>Blood-related cancers, or leukemias, have been shown to arise from a rare subset of cells that escape normal regulation and drive the formation and growth of the tumor. The finding that these so-called cancer stem cells, or leukemic stem cells (LSC), can be purified away from the other cells in the tumor allows their precise analysis to identify candidate molecules and regulatory pathways that play a role in progression, maintenance, and spreading of leukemias. The analyses of the other, numerically dominant, cells in the tumor, while also interesting, do not directly interrogate these key properties of malignancies. Mouse models of human myeloproliferative disorder and acute myelogenous leukemia have highlighted the remarkable conservation of disease mechanisms between both species. They can now be used to identify the LSC for each type of human leukemia and understand how they escape normal regulation and become malignant. Given the clinical importance of LSC identification, the insights gained through these approaches will quickly translate into clinical applications and lead to improved treatments for human leukemias.</description><identifier>EISSN: 1551-4005</identifier><identifier>PMID: 15655369</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Cell Proliferation ; Disease Models, Animal ; Disease Progression ; Gene Expression Regulation, Leukemic ; Hematopoiesis ; Hematopoietic Stem Cells - pathology ; Hematopoietic Stem Cells - physiology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - physiology ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Mice ; Myeloproliferative Disorders - genetics ; Myeloproliferative Disorders - pathology ; Neoplastic Stem Cells - pathology ; Neoplastic Stem Cells - physiology ; Nuclear Proteins - genetics ; Nuclear Proteins - physiology ; Polycomb Repressive Complex 1 ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - physiology ; Proto-Oncogene Proteins c-jun - genetics ; Proto-Oncogene Proteins c-jun - physiology ; Repressor Proteins - genetics ; Repressor Proteins - physiology ; Transcription Factor AP-1 - genetics ; Transcription Factor AP-1 - physiology ; Transcription Factors - genetics ; Transcription Factors - physiology ; Wnt Proteins - genetics ; Wnt Proteins - physiology</subject><ispartof>Cell cycle (Georgetown, Tex.), 2005-02, Vol.4 (2), p.266-268</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15655369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Passegué, Emmanuelle</creatorcontrib><title>Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Blood-related cancers, or leukemias, have been shown to arise from a rare subset of cells that escape normal regulation and drive the formation and growth of the tumor. The finding that these so-called cancer stem cells, or leukemic stem cells (LSC), can be purified away from the other cells in the tumor allows their precise analysis to identify candidate molecules and regulatory pathways that play a role in progression, maintenance, and spreading of leukemias. The analyses of the other, numerically dominant, cells in the tumor, while also interesting, do not directly interrogate these key properties of malignancies. Mouse models of human myeloproliferative disorder and acute myelogenous leukemia have highlighted the remarkable conservation of disease mechanisms between both species. They can now be used to identify the LSC for each type of human leukemia and understand how they escape normal regulation and become malignant. Given the clinical importance of LSC identification, the insights gained through these approaches will quickly translate into clinical applications and lead to improved treatments for human leukemias.</description><subject>Animals</subject><subject>Cell Proliferation</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Hematopoiesis</subject><subject>Hematopoietic Stem Cells - pathology</subject><subject>Hematopoietic Stem Cells - physiology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - physiology</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Mice</subject><subject>Myeloproliferative Disorders - genetics</subject><subject>Myeloproliferative Disorders - pathology</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Neoplastic Stem Cells - physiology</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - physiology</subject><subject>Polycomb Repressive Complex 1</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - physiology</subject><subject>Proto-Oncogene Proteins c-jun - genetics</subject><subject>Proto-Oncogene Proteins c-jun - physiology</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - physiology</subject><subject>Transcription Factor AP-1 - genetics</subject><subject>Transcription Factor AP-1 - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - physiology</subject><subject>Wnt Proteins - genetics</subject><subject>Wnt Proteins - physiology</subject><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMFKxDAURYMgzjj6C9KVKwtJX5M0SxnUEQbd6Lq8JK9abZratIv5e2dwZuHqwuFwudwzthRSirzkXC7YZUpfnBeVNuKCLYRUUoIyS_ayoYBTHGJLU-uyNFHIHHVduss6mr8p_IMZ9j5zn2Ps9zjsqIsf1Mc5nVy8YucNdomuj7li748Pb-tNvn19el7fb_NBgJlyMB4VFKZCtGQ0NFIZC7awzmtXEYLQZeOh0o5L7SxVewehVEXJredawYrd_vUOY_yZKU11aNNhIva031MrrZUp-EG8OYqzDeTrYWwDjrv69AD8Am7lV0U</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Passegué, Emmanuelle</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200502</creationdate><title>Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia</title><author>Passegué, Emmanuelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p139t-39da63298aabe973f569b3b2bcd7c8ea3174fd387c057cbe8973a346240bd0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Cell Proliferation</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Hematopoiesis</topic><topic>Hematopoietic Stem Cells - pathology</topic><topic>Hematopoietic Stem Cells - physiology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - physiology</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Mice</topic><topic>Myeloproliferative Disorders - genetics</topic><topic>Myeloproliferative Disorders - pathology</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Neoplastic Stem Cells - physiology</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - physiology</topic><topic>Polycomb Repressive Complex 1</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - physiology</topic><topic>Proto-Oncogene Proteins c-jun - genetics</topic><topic>Proto-Oncogene Proteins c-jun - physiology</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - physiology</topic><topic>Transcription Factor AP-1 - genetics</topic><topic>Transcription Factor AP-1 - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - physiology</topic><topic>Wnt Proteins - genetics</topic><topic>Wnt Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passegué, Emmanuelle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passegué, Emmanuelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2005-02</date><risdate>2005</risdate><volume>4</volume><issue>2</issue><spage>266</spage><epage>268</epage><pages>266-268</pages><eissn>1551-4005</eissn><abstract>Blood-related cancers, or leukemias, have been shown to arise from a rare subset of cells that escape normal regulation and drive the formation and growth of the tumor. The finding that these so-called cancer stem cells, or leukemic stem cells (LSC), can be purified away from the other cells in the tumor allows their precise analysis to identify candidate molecules and regulatory pathways that play a role in progression, maintenance, and spreading of leukemias. The analyses of the other, numerically dominant, cells in the tumor, while also interesting, do not directly interrogate these key properties of malignancies. Mouse models of human myeloproliferative disorder and acute myelogenous leukemia have highlighted the remarkable conservation of disease mechanisms between both species. They can now be used to identify the LSC for each type of human leukemia and understand how they escape normal regulation and become malignant. Given the clinical importance of LSC identification, the insights gained through these approaches will quickly translate into clinical applications and lead to improved treatments for human leukemias.</abstract><cop>United States</cop><pmid>15655369</pmid><tpages>3</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1551-4005
ispartof Cell cycle (Georgetown, Tex.), 2005-02, Vol.4 (2), p.266-268
issn 1551-4005
language eng
recordid cdi_proquest_miscellaneous_67769206
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Cell Proliferation
Disease Models, Animal
Disease Progression
Gene Expression Regulation, Leukemic
Hematopoiesis
Hematopoietic Stem Cells - pathology
Hematopoietic Stem Cells - physiology
Homeodomain Proteins - genetics
Homeodomain Proteins - physiology
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology
Mice
Myeloproliferative Disorders - genetics
Myeloproliferative Disorders - pathology
Neoplastic Stem Cells - pathology
Neoplastic Stem Cells - physiology
Nuclear Proteins - genetics
Nuclear Proteins - physiology
Polycomb Repressive Complex 1
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - physiology
Proto-Oncogene Proteins c-jun - genetics
Proto-Oncogene Proteins c-jun - physiology
Repressor Proteins - genetics
Repressor Proteins - physiology
Transcription Factor AP-1 - genetics
Transcription Factor AP-1 - physiology
Transcription Factors - genetics
Transcription Factors - physiology
Wnt Proteins - genetics
Wnt Proteins - physiology
title Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hematopoietic%20stem%20cells,%20leukemic%20stem%20cells%20and%20chronic%20myelogenous%20leukemia&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Passegu%C3%A9,%20Emmanuelle&rft.date=2005-02&rft.volume=4&rft.issue=2&rft.spage=266&rft.epage=268&rft.pages=266-268&rft.eissn=1551-4005&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E67769206%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67769206&rft_id=info:pmid/15655369&rfr_iscdi=true