SUMOylation plays a role in gemcitabine- and bortezomib-induced cytotoxicity in human oropharyngeal carcinoma KB gemcitabine-resistant clone
Bortezomib, a novel dipeptide boronic acid proteasome inhibitor, has been shown in previous studies to be synergistic with gemcitabine; however, the molecular mechanisms are not fully understood. Because post-translational modification of proteins, such as ubiquitination and SUMOylation, plays a cri...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2006-03, Vol.5 (3), p.533-540 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bortezomib, a novel dipeptide boronic acid proteasome inhibitor, has been shown in previous studies to be synergistic with gemcitabine; however, the molecular mechanisms are not fully understood. Because post-translational modification of proteins, such as ubiquitination and SUMOylation, plays a critical role in governing cellular homeostasis, we explored this further by treating human oropharyngeal carcinoma KB wild-type (KBwt) and gemcitabine-resistant (KBGem) cells with gemcitabine and bortezomib in a time-dependent and sequence-dependent manner. Treatment with bortezomib at 4 to 8 hours post-gemcitabine significantly induced cell death in KBwt cell lines. However, in KBGem cells, bortezomib alone was just as cytotoxic. Using reporter assays, nuclear factor-kappaB (NF-kappaB) activity was found to be 5-fold higher in KBGem cells than that in KBwt cells, and the combination treatment decreased NF-kappaB activity by 44% in KBwt cells and 28% in KBGem cells, respectively. By Western blot analyses, treatment with gemcitabine and bortezomib resulted in a cleavage of NF-kappaB in KBwt but not in KBGem cells. SUMOylation capacity was modulated by transducing KBwt and KBGem cells with lenti-SUMO-1 or the unconjugatable lenti-SUMO-1aa followed by drug treatment. The expression of cyclins A, D1, and E was differentially regulated by SUMOylation capacity in KBGem but not in KBwt cells. We report herein that the activation of NF-kappaB signaling plays a critical role in eliciting KBwt cell survival against gemcitabine, whereas the role of SUMOylation in modulating the steady-state levels of key cell cycle regulator proteins seems more significant in KBGem cells. |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-05-0290 |