Inhibitors of TLR-9 Act on Multiple Cell Subsets in Mouse and Man In Vitro and Prevent Death In Vivo from Systemic Inflammation
In parallel with the discovery of the immunostimulatory activities of CpG-containing oligodeoxynucleotides, several groups have reported specific DNA sequences that could inhibit activation by CpG-containing oligodeoxynucleotides in mouse models. We show that these inhibitory sequences, termed IRS,...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2005-05, Vol.174 (9), p.5193-5200 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In parallel with the discovery of the immunostimulatory activities of CpG-containing oligodeoxynucleotides, several groups have reported specific DNA sequences that could inhibit activation by CpG-containing oligodeoxynucleotides in mouse models. We show that these inhibitory sequences, termed IRS, inhibit TLR-9-mediated activation in human as well as mouse cells. This inhibitory activity includes proliferation and IL-6 production by B cells, and IFN-alpha and IL-12 production by plasmacytoid dendritic cells. Our studies of multiple cell types in both mice and humans show the optimal IRS to contain a GGGG motif within the sequence, and the activity to require a phosphorothioate backbone. Although the GGGG motif readily itself leads to formation of a tetrameric oligodeoxynucleotide structure, inhibitory activity resides exclusively in the single-stranded form. When coinjected with a CpG oligodeoxynucleotide in vivo, IRS were shown to inhibit inflammation through a reduction in serum cytokine responses. IRS do not need to be injected at the same site to inhibit, demonstrating that rapid, systemic inhibition of TLR-9 can be readily achieved. IRS can also inhibit a complex pathological response to ISS, as shown by protection from death after massive systemic inflammation induced by a CpG-containing oligodeoxynucleotides. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.174.9.5193 |