Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3-/- mice with experimental autoimmune encephalomyelitis
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) Th1 T cell-mediated disease of the CNS, used to study certain aspects of multiple sclerosis. CXCR3, the receptor for CXCL10, CXCL9, and CXCL11, is preferentially expressed on activated Th1 T cells and has been proposed to govern the migrati...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2006-04, Vol.176 (7), p.4399-4409 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) Th1 T cell-mediated disease of the CNS, used to study certain aspects of multiple sclerosis. CXCR3, the receptor for CXCL10, CXCL9, and CXCL11, is preferentially expressed on activated Th1 T cells and has been proposed to govern the migration of lymphocytes into the inflamed CNS during multiple sclerosis and EAE. Unexpectedly, CXCL10-deficient mice were susceptible to EAE, leaving uncertain what the role of CXCR3 and its ligands might play in this disease model. In this study, we report that CXCR3(-/-) mice exhibit exaggerated severity of EAE compared with wild-type (CXCR3(+/+)) littermate mice. Surprisingly, there were neither quantitative nor qualitative differences in CNS-infiltrating leukocytes between CXCR3(+/+) and CXCR3(-/-) mice with EAE. Despite these equivalent inflammatory infiltrates, CNS tissues from CXCR3(-/-) mice with EAE showed worsened blood-brain barrier disruption and more von Willebrand factor-immunoreactive vessels within inflamed spinal cords, as compared with CXCR3(+/+) mice. Spinal cords of CXCR3(-/-) mice with EAE demonstrated decreased levels of IFN-gamma, associated with reduced inducible NO synthase immunoreactivity, and lymph node T cells from CXCR3(-/-) mice primed with MOG(35-55) secreted less IFN-gamma in Ag-driven recall responses than cells from CXCR3(+/+) animals. CXCR3(-/-) lymph node T cells also showed enhanced Ag-driven proliferation, which was reduced by addition of IFN-gamma. Taken with prior findings, our data show that CXCL10 is the most relevant ligand for CXCR3 in EAE. CXCR3 does not govern leukocyte trafficking in EAE but modulates T cell IFN-gamma production and downstream events that affect disease severity. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.176.7.4399 |