Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface

The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-03, Vol.122 (12), p.124714-124714
Hauptverfasser: Lindstrom, C D, Quinn, Daniel, Zhu, X-Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124714
container_issue 12
container_start_page 124714
container_title The Journal of chemical physics
container_volume 122
creator Lindstrom, C D
Quinn, Daniel
Zhu, X-Y
description The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.
doi_str_mv 10.1063/1.1873632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67759079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67759079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-9d648271ab825a9372fb10a6a6545f0d90e2ab5330b037878593099b93390e2c3</originalsourceid><addsrcrecordid>eNpFkD1PwzAURS0EoqUw8AeQJ0SHtM92YsdjVfElVWKhYowc56UNSuNiOwP_nlSNxPSGe3R13yHknsGCgRRLtmC5ElLwCzJlkOtESQ2XZArAWaIlyAm5CeEbAJji6TWZsCwXMmVySr62oel2tDmYHVKPwXWmsxhodPToXYn04Fq0fWs8ta6rehsb11ETadwj7ZI9HqPpcLnqnxhjc9p0EX1tLN6Sq9q0Ae_GOyPbl-fP9Vuy-Xh9X682ieVKx0RXMs25YqbMeWa0ULwuGRhpZJZmNVQakJsyEwJKECpXeaYFaF1qIU6RFTPyeO4d1v70GGJxaILFth1WuT4UUqlMg9IDOD-D1rsQPNbF0Q9f-9-CQXGyWLBitDiwD2NpXx6w-idHbeIPHh1qFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67759079</pqid></control><display><type>article</type><title>Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Lindstrom, C D ; Quinn, Daniel ; Zhu, X-Y</creator><creatorcontrib>Lindstrom, C D ; Quinn, Daniel ; Zhu, X-Y</creatorcontrib><description>The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1873632</identifier><identifier>PMID: 15836416</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2005-03, Vol.122 (12), p.124714-124714</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-9d648271ab825a9372fb10a6a6545f0d90e2ab5330b037878593099b93390e2c3</citedby><cites>FETCH-LOGICAL-c279t-9d648271ab825a9372fb10a6a6545f0d90e2ab5330b037878593099b93390e2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15836416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindstrom, C D</creatorcontrib><creatorcontrib>Quinn, Daniel</creatorcontrib><creatorcontrib>Zhu, X-Y</creatorcontrib><title>Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAURS0EoqUw8AeQJ0SHtM92YsdjVfElVWKhYowc56UNSuNiOwP_nlSNxPSGe3R13yHknsGCgRRLtmC5ElLwCzJlkOtESQ2XZArAWaIlyAm5CeEbAJji6TWZsCwXMmVySr62oel2tDmYHVKPwXWmsxhodPToXYn04Fq0fWs8ta6rehsb11ETadwj7ZI9HqPpcLnqnxhjc9p0EX1tLN6Sq9q0Ae_GOyPbl-fP9Vuy-Xh9X682ieVKx0RXMs25YqbMeWa0ULwuGRhpZJZmNVQakJsyEwJKECpXeaYFaF1qIU6RFTPyeO4d1v70GGJxaILFth1WuT4UUqlMg9IDOD-D1rsQPNbF0Q9f-9-CQXGyWLBitDiwD2NpXx6w-idHbeIPHh1qFg</recordid><startdate>20050322</startdate><enddate>20050322</enddate><creator>Lindstrom, C D</creator><creator>Quinn, Daniel</creator><creator>Zhu, X-Y</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050322</creationdate><title>Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface</title><author>Lindstrom, C D ; Quinn, Daniel ; Zhu, X-Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-9d648271ab825a9372fb10a6a6545f0d90e2ab5330b037878593099b93390e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindstrom, C D</creatorcontrib><creatorcontrib>Quinn, Daniel</creatorcontrib><creatorcontrib>Zhu, X-Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindstrom, C D</au><au>Quinn, Daniel</au><au>Zhu, X-Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-03-22</date><risdate>2005</risdate><volume>122</volume><issue>12</issue><spage>124714</spage><epage>124714</epage><pages>124714-124714</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.</abstract><cop>United States</cop><pmid>15836416</pmid><doi>10.1063/1.1873632</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-03, Vol.122 (12), p.124714-124714
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_67759079
source AIP Journals Complete; AIP Digital Archive
title Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20image%20resonances%20to%20probe%20molecular%20conduction%20at%20the%20n-heptane/Au(111)%20interface&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lindstrom,%20C%20D&rft.date=2005-03-22&rft.volume=122&rft.issue=12&rft.spage=124714&rft.epage=124714&rft.pages=124714-124714&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1873632&rft_dat=%3Cproquest_cross%3E67759079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67759079&rft_id=info:pmid/15836416&rfr_iscdi=true