BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates
BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombina...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2006-03, Vol.103 (11), p.4068-4073 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4073 |
---|---|
container_issue | 11 |
container_start_page | 4068 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Wu, Leonard Bachrati, Csanad Z. Ou, Jiongwen Xu, Chang Yin, Jinhu Chang, Michael Wang, Weidong Li, Lei Brown, Grant W. Hickson, Ian D. |
description | BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed. |
doi_str_mv | 10.1073/pnas.0508295103 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67748727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048884</jstor_id><sourcerecordid>30048884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzAmIOCAu6Y6_YvuC1A-gK21FVcENyXISp80qsbe2g9p_j5dddYEDnHyYZx7PzIvQSwxHGASdr52JR8BBEsUx0EdohkHhsmIKHqMZABGlZIQdoGcxrgBAcQlP0QGuOBVMVjP0_WR5fCn4_OpigYvL4EefbCzSjS1OlhflmV1b11qXirM-Rj9Mqfeu8F1xnsHBX_spFle28WPdO_OrtnDJhtG2vcme5-hJZ4ZoX-zeQ_Tt08evp-fl8svnxenxsmy4YqmUjVEdoYzRSrYgiDCCGE6kAApQQ1t31BrW2Fa0Cojqqooo3LSMMVFboIweog9b73qq899NHjiYQa9DP5pwr73p9Z8V19_oa_9DY8ZUxUQWvNsJgr-dbEx67GNjh8E4m3fUlcjXyoP9F8QCpCKcZvDtX-DKT8HlK2gCmGLO5cY230JN8DEG2z2MjEFv8tWbfPU-39zx-vdN9_wu0Ay83wGbzr2Oaow1g0rqbhqGZO9SRt_8G83Eqy2xismHBySnwqSUjP4EA87CNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201315587</pqid></control><display><type>article</type><title>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Leonard ; Bachrati, Csanad Z. ; Ou, Jiongwen ; Xu, Chang ; Yin, Jinhu ; Chang, Michael ; Wang, Weidong ; Li, Lei ; Brown, Grant W. ; Hickson, Ian D.</creator><creatorcontrib>Wu, Leonard ; Bachrati, Csanad Z. ; Ou, Jiongwen ; Xu, Chang ; Yin, Jinhu ; Chang, Michael ; Wang, Weidong ; Li, Lei ; Brown, Grant W. ; Hickson, Ian D.</creatorcontrib><description>BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0508295103</identifier><identifier>PMID: 16537486</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Biochemistry ; Biological Sciences ; Bloom syndrome ; Bloom Syndrome - genetics ; Bloom Syndrome - metabolism ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Catalysis ; Cruciform DNA ; Deoxyribonucleic acid ; DNA ; DNA Helicases - chemistry ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA Topoisomerases, Type I - chemistry ; DNA Topoisomerases, Type I - genetics ; DNA Topoisomerases, Type I - metabolism ; DNA, Cruciform - chemistry ; DNA, Cruciform - genetics ; DNA, Cruciform - metabolism ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Genetic mutation ; Homologous recombination ; Humans ; In Vitro Techniques ; Molecules ; Multiprotein Complexes ; Nuclear Proteins ; Phenotype ; Phenotypes ; Protein Binding ; Quantification ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Recombination, Genetic ; RecQ Helicases ; Sister Chromatid Exchange ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (11), p.4068-4073</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 14, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</citedby><cites>FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048884$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048884$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16537486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Leonard</creatorcontrib><creatorcontrib>Bachrati, Csanad Z.</creatorcontrib><creatorcontrib>Ou, Jiongwen</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Yin, Jinhu</creatorcontrib><creatorcontrib>Chang, Michael</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Brown, Grant W.</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><title>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Bloom syndrome</subject><subject>Bloom Syndrome - genetics</subject><subject>Bloom Syndrome - metabolism</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Catalysis</subject><subject>Cruciform DNA</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Topoisomerases, Type I - chemistry</subject><subject>DNA Topoisomerases, Type I - genetics</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>DNA, Cruciform - chemistry</subject><subject>DNA, Cruciform - genetics</subject><subject>DNA, Cruciform - metabolism</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Genetic mutation</subject><subject>Homologous recombination</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Molecules</subject><subject>Multiprotein Complexes</subject><subject>Nuclear Proteins</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Protein Binding</subject><subject>Quantification</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombination, Genetic</subject><subject>RecQ Helicases</subject><subject>Sister Chromatid Exchange</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhzAmIOCAu6Y6_YvuC1A-gK21FVcENyXISp80qsbe2g9p_j5dddYEDnHyYZx7PzIvQSwxHGASdr52JR8BBEsUx0EdohkHhsmIKHqMZABGlZIQdoGcxrgBAcQlP0QGuOBVMVjP0_WR5fCn4_OpigYvL4EefbCzSjS1OlhflmV1b11qXirM-Rj9Mqfeu8F1xnsHBX_spFle28WPdO_OrtnDJhtG2vcme5-hJZ4ZoX-zeQ_Tt08evp-fl8svnxenxsmy4YqmUjVEdoYzRSrYgiDCCGE6kAApQQ1t31BrW2Fa0Cojqqooo3LSMMVFboIweog9b73qq899NHjiYQa9DP5pwr73p9Z8V19_oa_9DY8ZUxUQWvNsJgr-dbEx67GNjh8E4m3fUlcjXyoP9F8QCpCKcZvDtX-DKT8HlK2gCmGLO5cY230JN8DEG2z2MjEFv8tWbfPU-39zx-vdN9_wu0Ay83wGbzr2Oaow1g0rqbhqGZO9SRt_8G83Eqy2xismHBySnwqSUjP4EA87CNg</recordid><startdate>20060314</startdate><enddate>20060314</enddate><creator>Wu, Leonard</creator><creator>Bachrati, Csanad Z.</creator><creator>Ou, Jiongwen</creator><creator>Xu, Chang</creator><creator>Yin, Jinhu</creator><creator>Chang, Michael</creator><creator>Wang, Weidong</creator><creator>Li, Lei</creator><creator>Brown, Grant W.</creator><creator>Hickson, Ian D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060314</creationdate><title>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</title><author>Wu, Leonard ; Bachrati, Csanad Z. ; Ou, Jiongwen ; Xu, Chang ; Yin, Jinhu ; Chang, Michael ; Wang, Weidong ; Li, Lei ; Brown, Grant W. ; Hickson, Ian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Bloom syndrome</topic><topic>Bloom Syndrome - genetics</topic><topic>Bloom Syndrome - metabolism</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Catalysis</topic><topic>Cruciform DNA</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Topoisomerases, Type I - chemistry</topic><topic>DNA Topoisomerases, Type I - genetics</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>DNA, Cruciform - chemistry</topic><topic>DNA, Cruciform - genetics</topic><topic>DNA, Cruciform - metabolism</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Genetic mutation</topic><topic>Homologous recombination</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Molecules</topic><topic>Multiprotein Complexes</topic><topic>Nuclear Proteins</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Protein Binding</topic><topic>Quantification</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombination, Genetic</topic><topic>RecQ Helicases</topic><topic>Sister Chromatid Exchange</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Leonard</creatorcontrib><creatorcontrib>Bachrati, Csanad Z.</creatorcontrib><creatorcontrib>Ou, Jiongwen</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Yin, Jinhu</creatorcontrib><creatorcontrib>Chang, Michael</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Brown, Grant W.</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Leonard</au><au>Bachrati, Csanad Z.</au><au>Ou, Jiongwen</au><au>Xu, Chang</au><au>Yin, Jinhu</au><au>Chang, Michael</au><au>Wang, Weidong</au><au>Li, Lei</au><au>Brown, Grant W.</au><au>Hickson, Ian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-03-14</date><risdate>2006</risdate><volume>103</volume><issue>11</issue><spage>4068</spage><epage>4073</epage><pages>4068-4073</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16537486</pmid><doi>10.1073/pnas.0508295103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (11), p.4068-4073 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_67748727 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Biochemistry Biological Sciences Bloom syndrome Bloom Syndrome - genetics Bloom Syndrome - metabolism Carrier Proteins - chemistry Carrier Proteins - genetics Carrier Proteins - metabolism Catalysis Cruciform DNA Deoxyribonucleic acid DNA DNA Helicases - chemistry DNA Helicases - genetics DNA Helicases - metabolism DNA Topoisomerases, Type I - chemistry DNA Topoisomerases, Type I - genetics DNA Topoisomerases, Type I - metabolism DNA, Cruciform - chemistry DNA, Cruciform - genetics DNA, Cruciform - metabolism Enzymes Escherichia coli Escherichia coli - genetics Genetic mutation Homologous recombination Humans In Vitro Techniques Molecules Multiprotein Complexes Nuclear Proteins Phenotype Phenotypes Protein Binding Quantification Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Recombination, Genetic RecQ Helicases Sister Chromatid Exchange Yeasts |
title | BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BLAP75/RMI1%20Promotes%20the%20BLM-Dependent%20Dissolution%20of%20Homologous%20Recombination%20Intermediates&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wu,%20Leonard&rft.date=2006-03-14&rft.volume=103&rft.issue=11&rft.spage=4068&rft.epage=4073&rft.pages=4068-4073&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0508295103&rft_dat=%3Cjstor_proqu%3E30048884%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201315587&rft_id=info:pmid/16537486&rft_jstor_id=30048884&rfr_iscdi=true |