BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates

BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-03, Vol.103 (11), p.4068-4073
Hauptverfasser: Wu, Leonard, Bachrati, Csanad Z., Ou, Jiongwen, Xu, Chang, Yin, Jinhu, Chang, Michael, Wang, Weidong, Li, Lei, Brown, Grant W., Hickson, Ian D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4073
container_issue 11
container_start_page 4068
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Wu, Leonard
Bachrati, Csanad Z.
Ou, Jiongwen
Xu, Chang
Yin, Jinhu
Chang, Michael
Wang, Weidong
Li, Lei
Brown, Grant W.
Hickson, Ian D.
description BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.
doi_str_mv 10.1073/pnas.0508295103
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67748727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048884</jstor_id><sourcerecordid>30048884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzAmIOCAu6Y6_YvuC1A-gK21FVcENyXISp80qsbe2g9p_j5dddYEDnHyYZx7PzIvQSwxHGASdr52JR8BBEsUx0EdohkHhsmIKHqMZABGlZIQdoGcxrgBAcQlP0QGuOBVMVjP0_WR5fCn4_OpigYvL4EefbCzSjS1OlhflmV1b11qXirM-Rj9Mqfeu8F1xnsHBX_spFle28WPdO_OrtnDJhtG2vcme5-hJZ4ZoX-zeQ_Tt08evp-fl8svnxenxsmy4YqmUjVEdoYzRSrYgiDCCGE6kAApQQ1t31BrW2Fa0Cojqqooo3LSMMVFboIweog9b73qq899NHjiYQa9DP5pwr73p9Z8V19_oa_9DY8ZUxUQWvNsJgr-dbEx67GNjh8E4m3fUlcjXyoP9F8QCpCKcZvDtX-DKT8HlK2gCmGLO5cY230JN8DEG2z2MjEFv8tWbfPU-39zx-vdN9_wu0Ay83wGbzr2Oaow1g0rqbhqGZO9SRt_8G83Eqy2xismHBySnwqSUjP4EA87CNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201315587</pqid></control><display><type>article</type><title>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Leonard ; Bachrati, Csanad Z. ; Ou, Jiongwen ; Xu, Chang ; Yin, Jinhu ; Chang, Michael ; Wang, Weidong ; Li, Lei ; Brown, Grant W. ; Hickson, Ian D.</creator><creatorcontrib>Wu, Leonard ; Bachrati, Csanad Z. ; Ou, Jiongwen ; Xu, Chang ; Yin, Jinhu ; Chang, Michael ; Wang, Weidong ; Li, Lei ; Brown, Grant W. ; Hickson, Ian D.</creatorcontrib><description>BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0508295103</identifier><identifier>PMID: 16537486</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Biochemistry ; Biological Sciences ; Bloom syndrome ; Bloom Syndrome - genetics ; Bloom Syndrome - metabolism ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Catalysis ; Cruciform DNA ; Deoxyribonucleic acid ; DNA ; DNA Helicases - chemistry ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA Topoisomerases, Type I - chemistry ; DNA Topoisomerases, Type I - genetics ; DNA Topoisomerases, Type I - metabolism ; DNA, Cruciform - chemistry ; DNA, Cruciform - genetics ; DNA, Cruciform - metabolism ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Genetic mutation ; Homologous recombination ; Humans ; In Vitro Techniques ; Molecules ; Multiprotein Complexes ; Nuclear Proteins ; Phenotype ; Phenotypes ; Protein Binding ; Quantification ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Recombination, Genetic ; RecQ Helicases ; Sister Chromatid Exchange ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (11), p.4068-4073</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 14, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</citedby><cites>FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048884$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048884$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16537486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Leonard</creatorcontrib><creatorcontrib>Bachrati, Csanad Z.</creatorcontrib><creatorcontrib>Ou, Jiongwen</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Yin, Jinhu</creatorcontrib><creatorcontrib>Chang, Michael</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Brown, Grant W.</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><title>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Bloom syndrome</subject><subject>Bloom Syndrome - genetics</subject><subject>Bloom Syndrome - metabolism</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Catalysis</subject><subject>Cruciform DNA</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Topoisomerases, Type I - chemistry</subject><subject>DNA Topoisomerases, Type I - genetics</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>DNA, Cruciform - chemistry</subject><subject>DNA, Cruciform - genetics</subject><subject>DNA, Cruciform - metabolism</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Genetic mutation</subject><subject>Homologous recombination</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Molecules</subject><subject>Multiprotein Complexes</subject><subject>Nuclear Proteins</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Protein Binding</subject><subject>Quantification</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombination, Genetic</subject><subject>RecQ Helicases</subject><subject>Sister Chromatid Exchange</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhzAmIOCAu6Y6_YvuC1A-gK21FVcENyXISp80qsbe2g9p_j5dddYEDnHyYZx7PzIvQSwxHGASdr52JR8BBEsUx0EdohkHhsmIKHqMZABGlZIQdoGcxrgBAcQlP0QGuOBVMVjP0_WR5fCn4_OpigYvL4EefbCzSjS1OlhflmV1b11qXirM-Rj9Mqfeu8F1xnsHBX_spFle28WPdO_OrtnDJhtG2vcme5-hJZ4ZoX-zeQ_Tt08evp-fl8svnxenxsmy4YqmUjVEdoYzRSrYgiDCCGE6kAApQQ1t31BrW2Fa0Cojqqooo3LSMMVFboIweog9b73qq899NHjiYQa9DP5pwr73p9Z8V19_oa_9DY8ZUxUQWvNsJgr-dbEx67GNjh8E4m3fUlcjXyoP9F8QCpCKcZvDtX-DKT8HlK2gCmGLO5cY230JN8DEG2z2MjEFv8tWbfPU-39zx-vdN9_wu0Ay83wGbzr2Oaow1g0rqbhqGZO9SRt_8G83Eqy2xismHBySnwqSUjP4EA87CNg</recordid><startdate>20060314</startdate><enddate>20060314</enddate><creator>Wu, Leonard</creator><creator>Bachrati, Csanad Z.</creator><creator>Ou, Jiongwen</creator><creator>Xu, Chang</creator><creator>Yin, Jinhu</creator><creator>Chang, Michael</creator><creator>Wang, Weidong</creator><creator>Li, Lei</creator><creator>Brown, Grant W.</creator><creator>Hickson, Ian D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060314</creationdate><title>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</title><author>Wu, Leonard ; Bachrati, Csanad Z. ; Ou, Jiongwen ; Xu, Chang ; Yin, Jinhu ; Chang, Michael ; Wang, Weidong ; Li, Lei ; Brown, Grant W. ; Hickson, Ian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-8ca9f2344368d0727a72a52870300b0dbf3ea4ced7d9029f66291cd4447be0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Bloom syndrome</topic><topic>Bloom Syndrome - genetics</topic><topic>Bloom Syndrome - metabolism</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Catalysis</topic><topic>Cruciform DNA</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Topoisomerases, Type I - chemistry</topic><topic>DNA Topoisomerases, Type I - genetics</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>DNA, Cruciform - chemistry</topic><topic>DNA, Cruciform - genetics</topic><topic>DNA, Cruciform - metabolism</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Genetic mutation</topic><topic>Homologous recombination</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Molecules</topic><topic>Multiprotein Complexes</topic><topic>Nuclear Proteins</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Protein Binding</topic><topic>Quantification</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombination, Genetic</topic><topic>RecQ Helicases</topic><topic>Sister Chromatid Exchange</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Leonard</creatorcontrib><creatorcontrib>Bachrati, Csanad Z.</creatorcontrib><creatorcontrib>Ou, Jiongwen</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Yin, Jinhu</creatorcontrib><creatorcontrib>Chang, Michael</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Brown, Grant W.</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Leonard</au><au>Bachrati, Csanad Z.</au><au>Ou, Jiongwen</au><au>Xu, Chang</au><au>Yin, Jinhu</au><au>Chang, Michael</au><au>Wang, Weidong</au><au>Li, Lei</au><au>Brown, Grant W.</au><au>Hickson, Ian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-03-14</date><risdate>2006</risdate><volume>103</volume><issue>11</issue><spage>4068</spage><epage>4073</epage><pages>4068-4073</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIa (hTOPO IIIα), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIα complex, BLAP75/ RMI1, promotes dissolution catalyzed by hTOPO IIIα. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIα because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIα to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16537486</pmid><doi>10.1073/pnas.0508295103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-03, Vol.103 (11), p.4068-4073
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_67748727
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Biochemistry
Biological Sciences
Bloom syndrome
Bloom Syndrome - genetics
Bloom Syndrome - metabolism
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Catalysis
Cruciform DNA
Deoxyribonucleic acid
DNA
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Topoisomerases, Type I - chemistry
DNA Topoisomerases, Type I - genetics
DNA Topoisomerases, Type I - metabolism
DNA, Cruciform - chemistry
DNA, Cruciform - genetics
DNA, Cruciform - metabolism
Enzymes
Escherichia coli
Escherichia coli - genetics
Genetic mutation
Homologous recombination
Humans
In Vitro Techniques
Molecules
Multiprotein Complexes
Nuclear Proteins
Phenotype
Phenotypes
Protein Binding
Quantification
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Recombination, Genetic
RecQ Helicases
Sister Chromatid Exchange
Yeasts
title BLAP75/RMI1 Promotes the BLM-Dependent Dissolution of Homologous Recombination Intermediates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BLAP75/RMI1%20Promotes%20the%20BLM-Dependent%20Dissolution%20of%20Homologous%20Recombination%20Intermediates&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wu,%20Leonard&rft.date=2006-03-14&rft.volume=103&rft.issue=11&rft.spage=4068&rft.epage=4073&rft.pages=4068-4073&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0508295103&rft_dat=%3Cjstor_proqu%3E30048884%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201315587&rft_id=info:pmid/16537486&rft_jstor_id=30048884&rfr_iscdi=true