Tertiary endosymbiosis driven genome evolution in dinoflagellate algae

Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2005-05, Vol.22 (5), p.1299-1308
Hauptverfasser: Yoon, Hwan Su, Hackett, Jeremiah D, Van Dolah, Frances M, Nosenko, Tetyana, Lidie, Kristy L, Bhattacharya, Debashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue 5
container_start_page 1299
container_title Molecular biology and evolution
container_volume 22
creator Yoon, Hwan Su
Hackett, Jeremiah D
Van Dolah, Frances M
Nosenko, Tetyana
Lidie, Kristy L
Bhattacharya, Debashish
description Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.
doi_str_mv 10.1093/molbev/msi118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67738150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67738150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4Mobk6PXqUnb3V5SZuXHmU4FQZe5rmk7cuItM1s2sH-ezs62NHTe4ePjx8fY4_AX4Bnctn4uqDDsgkOQF-xOaQSY0DIrtmc4_gnXOoZuwvhh3NIEqVu2QxSTBQHnLP1lrreme4YUVv5cGwK54MLUdW5A7XRjlrfUEQHXw-9823k2qhyrbe12VFdm54iU-8M3bMba-pAD-e7YN_rt-3qI958vX-uXjdxKYXo4xSQLOmyUGgrw60QhbCVSi0W0pSyAoEqw3G9NlyWQEJgasgmyqZSZVrLBXuevPvO_w4U-rxxoTwtackPIVeIUkPK_wUBpdQcT8Z4AsvOh9CRzfeda8YgOfD8VDifCudT4ZF_OouHoqHqQp-Tyj8QInny</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17338078</pqid></control><display><type>article</type><title>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yoon, Hwan Su ; Hackett, Jeremiah D ; Van Dolah, Frances M ; Nosenko, Tetyana ; Lidie, Kristy L ; Bhattacharya, Debashish</creator><creatorcontrib>Yoon, Hwan Su ; Hackett, Jeremiah D ; Van Dolah, Frances M ; Nosenko, Tetyana ; Lidie, Kristy L ; Bhattacharya, Debashish</creatorcontrib><description>Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msi118</identifier><identifier>PMID: 15746017</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Carotenoids ; Cell Nucleus - genetics ; Dinoflagellida - cytology ; Dinoflagellida - genetics ; Dinoflagellida - metabolism ; Evolution, Molecular ; Expressed Sequence Tags ; Genome ; Phylogeny ; Plastids - genetics ; Rhodophyta - cytology ; Rhodophyta - genetics ; Rhodophyta - metabolism ; Ribulose-Bisphosphate Carboxylase - genetics ; Symbiosis - genetics ; Xanthophylls - metabolism</subject><ispartof>Molecular biology and evolution, 2005-05, Vol.22 (5), p.1299-1308</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</citedby><cites>FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15746017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Hackett, Jeremiah D</creatorcontrib><creatorcontrib>Van Dolah, Frances M</creatorcontrib><creatorcontrib>Nosenko, Tetyana</creatorcontrib><creatorcontrib>Lidie, Kristy L</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><title>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.</description><subject>Animals</subject><subject>Carotenoids</subject><subject>Cell Nucleus - genetics</subject><subject>Dinoflagellida - cytology</subject><subject>Dinoflagellida - genetics</subject><subject>Dinoflagellida - metabolism</subject><subject>Evolution, Molecular</subject><subject>Expressed Sequence Tags</subject><subject>Genome</subject><subject>Phylogeny</subject><subject>Plastids - genetics</subject><subject>Rhodophyta - cytology</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - metabolism</subject><subject>Ribulose-Bisphosphate Carboxylase - genetics</subject><subject>Symbiosis - genetics</subject><subject>Xanthophylls - metabolism</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFLwzAUh4Mobk6PXqUnb3V5SZuXHmU4FQZe5rmk7cuItM1s2sH-ezs62NHTe4ePjx8fY4_AX4Bnctn4uqDDsgkOQF-xOaQSY0DIrtmc4_gnXOoZuwvhh3NIEqVu2QxSTBQHnLP1lrreme4YUVv5cGwK54MLUdW5A7XRjlrfUEQHXw-9823k2qhyrbe12VFdm54iU-8M3bMba-pAD-e7YN_rt-3qI958vX-uXjdxKYXo4xSQLOmyUGgrw60QhbCVSi0W0pSyAoEqw3G9NlyWQEJgasgmyqZSZVrLBXuevPvO_w4U-rxxoTwtackPIVeIUkPK_wUBpdQcT8Z4AsvOh9CRzfeda8YgOfD8VDifCudT4ZF_OouHoqHqQp-Tyj8QInny</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Yoon, Hwan Su</creator><creator>Hackett, Jeremiah D</creator><creator>Van Dolah, Frances M</creator><creator>Nosenko, Tetyana</creator><creator>Lidie, Kristy L</creator><creator>Bhattacharya, Debashish</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200505</creationdate><title>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</title><author>Yoon, Hwan Su ; Hackett, Jeremiah D ; Van Dolah, Frances M ; Nosenko, Tetyana ; Lidie, Kristy L ; Bhattacharya, Debashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Carotenoids</topic><topic>Cell Nucleus - genetics</topic><topic>Dinoflagellida - cytology</topic><topic>Dinoflagellida - genetics</topic><topic>Dinoflagellida - metabolism</topic><topic>Evolution, Molecular</topic><topic>Expressed Sequence Tags</topic><topic>Genome</topic><topic>Phylogeny</topic><topic>Plastids - genetics</topic><topic>Rhodophyta - cytology</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - metabolism</topic><topic>Ribulose-Bisphosphate Carboxylase - genetics</topic><topic>Symbiosis - genetics</topic><topic>Xanthophylls - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Hackett, Jeremiah D</creatorcontrib><creatorcontrib>Van Dolah, Frances M</creatorcontrib><creatorcontrib>Nosenko, Tetyana</creatorcontrib><creatorcontrib>Lidie, Kristy L</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Hwan Su</au><au>Hackett, Jeremiah D</au><au>Van Dolah, Frances M</au><au>Nosenko, Tetyana</au><au>Lidie, Kristy L</au><au>Bhattacharya, Debashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2005-05</date><risdate>2005</risdate><volume>22</volume><issue>5</issue><spage>1299</spage><epage>1308</epage><pages>1299-1308</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.</abstract><cop>United States</cop><pmid>15746017</pmid><doi>10.1093/molbev/msi118</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2005-05, Vol.22 (5), p.1299-1308
issn 0737-4038
1537-1719
language eng
recordid cdi_proquest_miscellaneous_67738150
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Carotenoids
Cell Nucleus - genetics
Dinoflagellida - cytology
Dinoflagellida - genetics
Dinoflagellida - metabolism
Evolution, Molecular
Expressed Sequence Tags
Genome
Phylogeny
Plastids - genetics
Rhodophyta - cytology
Rhodophyta - genetics
Rhodophyta - metabolism
Ribulose-Bisphosphate Carboxylase - genetics
Symbiosis - genetics
Xanthophylls - metabolism
title Tertiary endosymbiosis driven genome evolution in dinoflagellate algae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tertiary%20endosymbiosis%20driven%20genome%20evolution%20in%20dinoflagellate%20algae&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Yoon,%20Hwan%20Su&rft.date=2005-05&rft.volume=22&rft.issue=5&rft.spage=1299&rft.epage=1308&rft.pages=1299-1308&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msi118&rft_dat=%3Cproquest_cross%3E67738150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17338078&rft_id=info:pmid/15746017&rfr_iscdi=true