Tertiary endosymbiosis driven genome evolution in dinoflagellate algae
Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some rema...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2005-05, Vol.22 (5), p.1299-1308 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1308 |
---|---|
container_issue | 5 |
container_start_page | 1299 |
container_title | Molecular biology and evolution |
container_volume | 22 |
creator | Yoon, Hwan Su Hackett, Jeremiah D Van Dolah, Frances M Nosenko, Tetyana Lidie, Kristy L Bhattacharya, Debashish |
description | Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution. |
doi_str_mv | 10.1093/molbev/msi118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67738150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67738150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4Mobk6PXqUnb3V5SZuXHmU4FQZe5rmk7cuItM1s2sH-ezs62NHTe4ePjx8fY4_AX4Bnctn4uqDDsgkOQF-xOaQSY0DIrtmc4_gnXOoZuwvhh3NIEqVu2QxSTBQHnLP1lrreme4YUVv5cGwK54MLUdW5A7XRjlrfUEQHXw-9823k2qhyrbe12VFdm54iU-8M3bMba-pAD-e7YN_rt-3qI958vX-uXjdxKYXo4xSQLOmyUGgrw60QhbCVSi0W0pSyAoEqw3G9NlyWQEJgasgmyqZSZVrLBXuevPvO_w4U-rxxoTwtackPIVeIUkPK_wUBpdQcT8Z4AsvOh9CRzfeda8YgOfD8VDifCudT4ZF_OouHoqHqQp-Tyj8QInny</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17338078</pqid></control><display><type>article</type><title>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yoon, Hwan Su ; Hackett, Jeremiah D ; Van Dolah, Frances M ; Nosenko, Tetyana ; Lidie, Kristy L ; Bhattacharya, Debashish</creator><creatorcontrib>Yoon, Hwan Su ; Hackett, Jeremiah D ; Van Dolah, Frances M ; Nosenko, Tetyana ; Lidie, Kristy L ; Bhattacharya, Debashish</creatorcontrib><description>Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msi118</identifier><identifier>PMID: 15746017</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Carotenoids ; Cell Nucleus - genetics ; Dinoflagellida - cytology ; Dinoflagellida - genetics ; Dinoflagellida - metabolism ; Evolution, Molecular ; Expressed Sequence Tags ; Genome ; Phylogeny ; Plastids - genetics ; Rhodophyta - cytology ; Rhodophyta - genetics ; Rhodophyta - metabolism ; Ribulose-Bisphosphate Carboxylase - genetics ; Symbiosis - genetics ; Xanthophylls - metabolism</subject><ispartof>Molecular biology and evolution, 2005-05, Vol.22 (5), p.1299-1308</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</citedby><cites>FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15746017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Hackett, Jeremiah D</creatorcontrib><creatorcontrib>Van Dolah, Frances M</creatorcontrib><creatorcontrib>Nosenko, Tetyana</creatorcontrib><creatorcontrib>Lidie, Kristy L</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><title>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.</description><subject>Animals</subject><subject>Carotenoids</subject><subject>Cell Nucleus - genetics</subject><subject>Dinoflagellida - cytology</subject><subject>Dinoflagellida - genetics</subject><subject>Dinoflagellida - metabolism</subject><subject>Evolution, Molecular</subject><subject>Expressed Sequence Tags</subject><subject>Genome</subject><subject>Phylogeny</subject><subject>Plastids - genetics</subject><subject>Rhodophyta - cytology</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - metabolism</subject><subject>Ribulose-Bisphosphate Carboxylase - genetics</subject><subject>Symbiosis - genetics</subject><subject>Xanthophylls - metabolism</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFLwzAUh4Mobk6PXqUnb3V5SZuXHmU4FQZe5rmk7cuItM1s2sH-ezs62NHTe4ePjx8fY4_AX4Bnctn4uqDDsgkOQF-xOaQSY0DIrtmc4_gnXOoZuwvhh3NIEqVu2QxSTBQHnLP1lrreme4YUVv5cGwK54MLUdW5A7XRjlrfUEQHXw-9823k2qhyrbe12VFdm54iU-8M3bMba-pAD-e7YN_rt-3qI958vX-uXjdxKYXo4xSQLOmyUGgrw60QhbCVSi0W0pSyAoEqw3G9NlyWQEJgasgmyqZSZVrLBXuevPvO_w4U-rxxoTwtackPIVeIUkPK_wUBpdQcT8Z4AsvOh9CRzfeda8YgOfD8VDifCudT4ZF_OouHoqHqQp-Tyj8QInny</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Yoon, Hwan Su</creator><creator>Hackett, Jeremiah D</creator><creator>Van Dolah, Frances M</creator><creator>Nosenko, Tetyana</creator><creator>Lidie, Kristy L</creator><creator>Bhattacharya, Debashish</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200505</creationdate><title>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</title><author>Yoon, Hwan Su ; Hackett, Jeremiah D ; Van Dolah, Frances M ; Nosenko, Tetyana ; Lidie, Kristy L ; Bhattacharya, Debashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-517efe8cb67fda0f22b2fd65f7b3ac3d1276971718a03c1e2275aef46f5369883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Carotenoids</topic><topic>Cell Nucleus - genetics</topic><topic>Dinoflagellida - cytology</topic><topic>Dinoflagellida - genetics</topic><topic>Dinoflagellida - metabolism</topic><topic>Evolution, Molecular</topic><topic>Expressed Sequence Tags</topic><topic>Genome</topic><topic>Phylogeny</topic><topic>Plastids - genetics</topic><topic>Rhodophyta - cytology</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - metabolism</topic><topic>Ribulose-Bisphosphate Carboxylase - genetics</topic><topic>Symbiosis - genetics</topic><topic>Xanthophylls - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Hackett, Jeremiah D</creatorcontrib><creatorcontrib>Van Dolah, Frances M</creatorcontrib><creatorcontrib>Nosenko, Tetyana</creatorcontrib><creatorcontrib>Lidie, Kristy L</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Hwan Su</au><au>Hackett, Jeremiah D</au><au>Van Dolah, Frances M</au><au>Nosenko, Tetyana</au><au>Lidie, Kristy L</au><au>Bhattacharya, Debashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tertiary endosymbiosis driven genome evolution in dinoflagellate algae</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2005-05</date><risdate>2005</risdate><volume>22</volume><issue>5</issue><spage>1299</spage><epage>1308</epage><pages>1299-1308</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.</abstract><cop>United States</cop><pmid>15746017</pmid><doi>10.1093/molbev/msi118</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2005-05, Vol.22 (5), p.1299-1308 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_proquest_miscellaneous_67738150 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Carotenoids Cell Nucleus - genetics Dinoflagellida - cytology Dinoflagellida - genetics Dinoflagellida - metabolism Evolution, Molecular Expressed Sequence Tags Genome Phylogeny Plastids - genetics Rhodophyta - cytology Rhodophyta - genetics Rhodophyta - metabolism Ribulose-Bisphosphate Carboxylase - genetics Symbiosis - genetics Xanthophylls - metabolism |
title | Tertiary endosymbiosis driven genome evolution in dinoflagellate algae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tertiary%20endosymbiosis%20driven%20genome%20evolution%20in%20dinoflagellate%20algae&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Yoon,%20Hwan%20Su&rft.date=2005-05&rft.volume=22&rft.issue=5&rft.spage=1299&rft.epage=1308&rft.pages=1299-1308&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msi118&rft_dat=%3Cproquest_cross%3E67738150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17338078&rft_id=info:pmid/15746017&rfr_iscdi=true |