Biocompatibility and Fatigue Properties of Polystyrene−Polyisobutylene−Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial

This paper will discuss the biocompatibility and dynamic fatigue properties of polystyrene-b-polyisobutylene-b-polystyrene thermoplastic elastomer with 30 wt % polystyrene (SIBS30), an emerging FDA-approved biomaterial. SIBS30 is a very soft, transparent biomaterial resembling silicone rubber, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2006-03, Vol.7 (3), p.844-850
Hauptverfasser: El Fray, Miroslawa, Prowans, Piotr, Puskas, Judit E, Altstädt, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 850
container_issue 3
container_start_page 844
container_title Biomacromolecules
container_volume 7
creator El Fray, Miroslawa
Prowans, Piotr
Puskas, Judit E
Altstädt, Volker
description This paper will discuss the biocompatibility and dynamic fatigue properties of polystyrene-b-polyisobutylene-b-polystyrene thermoplastic elastomer with 30 wt % polystyrene (SIBS30), an emerging FDA-approved biomaterial. SIBS30 is a very soft, transparent biomaterial resembling silicone rubber, with superior mechanical properties. Using the hysteresis method adopted for soft biomaterials, the dynamic fatigue properties of SIBS30 were found to be between those of polyurethane and silicone rubber, with fatigue life twice as long as that of silicone. Under single load testing (SLT, 1.25 MPa), SIBS30 displayed less than half the dynamic creep compared to silicone, both in air and in vitro (37 °C, simulated body fluid). Hemolysis and 30- and 180-day implantation studies revealed excellent biocompatibility of the new biomaterial. The results presented in this paper indicate that, in comparison with silicone rubber, SIBS30 has similar biocompatibility and superior dynamic fatigue properties.
doi_str_mv 10.1021/bm050971c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67736561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67736561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-9c4d523ca016000aaa7e6dfa8ae8ae119df5e3ccf95a31444b9ada079f4243c53</originalsourceid><addsrcrecordid>eNptkM9O3DAQxi1UxJ-FQ1-gyqWVkBqwYzuuj3S1UCQkOCznaOI4WyMnTm3nkDegVx6RJ8HLRt1LJUvzjeenbzQfQp8JviS4IFd1hzmWgqgDdEJ4UeasxMWnD81zIaQ4RqchPGOMJWX8CB2TkheSFcUJ-vvTOOW6AaKpjTVxyqBvspvUbkadPXo3aB-NDplrs0dnpxAnr3v99vK67Uxw9Rgnu_-Z59-TTbbqtN-YfpOtf2vfucFCiEZlq211aZZ02t5BTBLsGTpswQZ9PtcFerpZrZe_8vuH27vl9X0OlNGYS8UaXlAFmJTpIAAQumxa-AE6PUJk03JNlWolB0oYY7WEBrCQLSsYVZwu0Led7-Ddn1GHWHUmKG0t9NqNoSqFoCUvSQIvdqDyLgSv22rwpgM_VQRX29yrf7kn9stsOtadbvbkHHQCvs4ABAW29dArE_acSMcwKfYcqFA9u9H3KYv_LHwH0UGc7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67736561</pqid></control><display><type>article</type><title>Biocompatibility and Fatigue Properties of Polystyrene−Polyisobutylene−Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>El Fray, Miroslawa ; Prowans, Piotr ; Puskas, Judit E ; Altstädt, Volker</creator><creatorcontrib>El Fray, Miroslawa ; Prowans, Piotr ; Puskas, Judit E ; Altstädt, Volker</creatorcontrib><description>This paper will discuss the biocompatibility and dynamic fatigue properties of polystyrene-b-polyisobutylene-b-polystyrene thermoplastic elastomer with 30 wt % polystyrene (SIBS30), an emerging FDA-approved biomaterial. SIBS30 is a very soft, transparent biomaterial resembling silicone rubber, with superior mechanical properties. Using the hysteresis method adopted for soft biomaterials, the dynamic fatigue properties of SIBS30 were found to be between those of polyurethane and silicone rubber, with fatigue life twice as long as that of silicone. Under single load testing (SLT, 1.25 MPa), SIBS30 displayed less than half the dynamic creep compared to silicone, both in air and in vitro (37 °C, simulated body fluid). Hemolysis and 30- and 180-day implantation studies revealed excellent biocompatibility of the new biomaterial. The results presented in this paper indicate that, in comparison with silicone rubber, SIBS30 has similar biocompatibility and superior dynamic fatigue properties.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm050971c</identifier><identifier>PMID: 16529422</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Applied sciences ; Biocompatible Materials - chemistry ; Biological and medical sciences ; Biological properties ; Elasticity ; Exact sciences and technology ; Hemolysis ; Hot Temperature ; Humans ; Materials Testing - instrumentation ; Medical sciences ; Models, Chemical ; Models, Molecular ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Sheep ; Silicones - chemistry ; Styrenes - chemistry ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tensile Strength</subject><ispartof>Biomacromolecules, 2006-03, Vol.7 (3), p.844-850</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-9c4d523ca016000aaa7e6dfa8ae8ae119df5e3ccf95a31444b9ada079f4243c53</citedby><cites>FETCH-LOGICAL-a343t-9c4d523ca016000aaa7e6dfa8ae8ae119df5e3ccf95a31444b9ada079f4243c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm050971c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm050971c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17600497$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16529422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El Fray, Miroslawa</creatorcontrib><creatorcontrib>Prowans, Piotr</creatorcontrib><creatorcontrib>Puskas, Judit E</creatorcontrib><creatorcontrib>Altstädt, Volker</creatorcontrib><title>Biocompatibility and Fatigue Properties of Polystyrene−Polyisobutylene−Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>This paper will discuss the biocompatibility and dynamic fatigue properties of polystyrene-b-polyisobutylene-b-polystyrene thermoplastic elastomer with 30 wt % polystyrene (SIBS30), an emerging FDA-approved biomaterial. SIBS30 is a very soft, transparent biomaterial resembling silicone rubber, with superior mechanical properties. Using the hysteresis method adopted for soft biomaterials, the dynamic fatigue properties of SIBS30 were found to be between those of polyurethane and silicone rubber, with fatigue life twice as long as that of silicone. Under single load testing (SLT, 1.25 MPa), SIBS30 displayed less than half the dynamic creep compared to silicone, both in air and in vitro (37 °C, simulated body fluid). Hemolysis and 30- and 180-day implantation studies revealed excellent biocompatibility of the new biomaterial. The results presented in this paper indicate that, in comparison with silicone rubber, SIBS30 has similar biocompatibility and superior dynamic fatigue properties.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biological properties</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Hemolysis</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Materials Testing - instrumentation</subject><subject>Medical sciences</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Sheep</subject><subject>Silicones - chemistry</subject><subject>Styrenes - chemistry</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tensile Strength</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM9O3DAQxi1UxJ-FQ1-gyqWVkBqwYzuuj3S1UCQkOCznaOI4WyMnTm3nkDegVx6RJ8HLRt1LJUvzjeenbzQfQp8JviS4IFd1hzmWgqgDdEJ4UeasxMWnD81zIaQ4RqchPGOMJWX8CB2TkheSFcUJ-vvTOOW6AaKpjTVxyqBvspvUbkadPXo3aB-NDplrs0dnpxAnr3v99vK67Uxw9Rgnu_-Z59-TTbbqtN-YfpOtf2vfucFCiEZlq211aZZ02t5BTBLsGTpswQZ9PtcFerpZrZe_8vuH27vl9X0OlNGYS8UaXlAFmJTpIAAQumxa-AE6PUJk03JNlWolB0oYY7WEBrCQLSsYVZwu0Led7-Ddn1GHWHUmKG0t9NqNoSqFoCUvSQIvdqDyLgSv22rwpgM_VQRX29yrf7kn9stsOtadbvbkHHQCvs4ABAW29dArE_acSMcwKfYcqFA9u9H3KYv_LHwH0UGc7Q</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>El Fray, Miroslawa</creator><creator>Prowans, Piotr</creator><creator>Puskas, Judit E</creator><creator>Altstädt, Volker</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Biocompatibility and Fatigue Properties of Polystyrene−Polyisobutylene−Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial</title><author>El Fray, Miroslawa ; Prowans, Piotr ; Puskas, Judit E ; Altstädt, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-9c4d523ca016000aaa7e6dfa8ae8ae119df5e3ccf95a31444b9ada079f4243c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biological properties</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Hemolysis</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Materials Testing - instrumentation</topic><topic>Medical sciences</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Sheep</topic><topic>Silicones - chemistry</topic><topic>Styrenes - chemistry</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Fray, Miroslawa</creatorcontrib><creatorcontrib>Prowans, Piotr</creatorcontrib><creatorcontrib>Puskas, Judit E</creatorcontrib><creatorcontrib>Altstädt, Volker</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Fray, Miroslawa</au><au>Prowans, Piotr</au><au>Puskas, Judit E</au><au>Altstädt, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatibility and Fatigue Properties of Polystyrene−Polyisobutylene−Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>7</volume><issue>3</issue><spage>844</spage><epage>850</epage><pages>844-850</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>This paper will discuss the biocompatibility and dynamic fatigue properties of polystyrene-b-polyisobutylene-b-polystyrene thermoplastic elastomer with 30 wt % polystyrene (SIBS30), an emerging FDA-approved biomaterial. SIBS30 is a very soft, transparent biomaterial resembling silicone rubber, with superior mechanical properties. Using the hysteresis method adopted for soft biomaterials, the dynamic fatigue properties of SIBS30 were found to be between those of polyurethane and silicone rubber, with fatigue life twice as long as that of silicone. Under single load testing (SLT, 1.25 MPa), SIBS30 displayed less than half the dynamic creep compared to silicone, both in air and in vitro (37 °C, simulated body fluid). Hemolysis and 30- and 180-day implantation studies revealed excellent biocompatibility of the new biomaterial. The results presented in this paper indicate that, in comparison with silicone rubber, SIBS30 has similar biocompatibility and superior dynamic fatigue properties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16529422</pmid><doi>10.1021/bm050971c</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2006-03, Vol.7 (3), p.844-850
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_67736561
source MEDLINE; American Chemical Society Journals
subjects Animals
Applied sciences
Biocompatible Materials - chemistry
Biological and medical sciences
Biological properties
Elasticity
Exact sciences and technology
Hemolysis
Hot Temperature
Humans
Materials Testing - instrumentation
Medical sciences
Models, Chemical
Models, Molecular
Organic polymers
Physicochemistry of polymers
Properties and characterization
Sheep
Silicones - chemistry
Styrenes - chemistry
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tensile Strength
title Biocompatibility and Fatigue Properties of Polystyrene−Polyisobutylene−Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatibility%20and%20Fatigue%20Properties%20of%20Polystyrene%E2%88%92Polyisobutylene%E2%88%92Polystyrene,%20an%20Emerging%20Thermoplastic%20Elastomeric%20Biomaterial&rft.jtitle=Biomacromolecules&rft.au=El%20Fray,%20Miroslawa&rft.date=2006-03-01&rft.volume=7&rft.issue=3&rft.spage=844&rft.epage=850&rft.pages=844-850&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm050971c&rft_dat=%3Cproquest_cross%3E67736561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67736561&rft_id=info:pmid/16529422&rfr_iscdi=true