Mixed Frequency/Time Domain Optical Analogues of Heteronuclear Multidimensional NMR

Ultrafast spectroscopy is dominated by time domain methods such as pump−probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-03, Vol.110 (10), p.3352-3355
Hauptverfasser: Pakoulev, Andrei V, Rickard, Mark A, Meyer, Kent A, Kornau, Kathryn, Mathew, Nathan A, Thompson, David E, Wright, John C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3355
container_issue 10
container_start_page 3352
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 110
creator Pakoulev, Andrei V
Rickard, Mark A
Meyer, Kent A
Kornau, Kathryn
Mathew, Nathan A
Thompson, David E
Wright, John C
description Ultrafast spectroscopy is dominated by time domain methods such as pump−probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy.
doi_str_mv 10.1021/jp057339y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67734243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67734243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-87b70e0c6dff3cd337fa8a15f11c2a32d02984bda4c15962ba3494e3b35107043</originalsourceid><addsrcrecordid>eNpt0M9PwjAUB_DGaATRg_-A2UUTD5P-WDd2JChgZGAEL16arutMcVtnuyXw31szghdPr8n7vPeaLwDXCD4giNFwW0MaERLvT0AfUQx9ihE9dW84in0akrgHLqzdQggRwcE56KGQ4jBEuA_WidrJzJsa-d3KSuyHG1VK71GXXFXeqm6U4IU3rnihP1tpPZ17c9lIo6tWFJIbL2mLRmVuprJKO-Ytk7dLcJbzwsqrQx2A9-nTZjL3F6vZ82S88DmhqPFHURpBCUWY5TkRGSFRzkcc0RwhgTnBGcTxKEgzHghE4xCnnARxIEnqpmEEAzIAd93e2mj3e9uwUlkhi4JXUreWhVFEAhwQB-87KIy21sic1UaV3OwZguw3QXZM0Nmbw9I2LWX2Jw-ROeB3QNlG7o59br7cQRJRtnldM_wCP5JlCNnM-dvOc2HZVrfGpWT_OfwDNkyGWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67734243</pqid></control><display><type>article</type><title>Mixed Frequency/Time Domain Optical Analogues of Heteronuclear Multidimensional NMR</title><source>ACS Publications</source><creator>Pakoulev, Andrei V ; Rickard, Mark A ; Meyer, Kent A ; Kornau, Kathryn ; Mathew, Nathan A ; Thompson, David E ; Wright, John C</creator><creatorcontrib>Pakoulev, Andrei V ; Rickard, Mark A ; Meyer, Kent A ; Kornau, Kathryn ; Mathew, Nathan A ; Thompson, David E ; Wright, John C</creatorcontrib><description>Ultrafast spectroscopy is dominated by time domain methods such as pump−probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp057339y</identifier><identifier>PMID: 16526612</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2006-03, Vol.110 (10), p.3352-3355</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-87b70e0c6dff3cd337fa8a15f11c2a32d02984bda4c15962ba3494e3b35107043</citedby><cites>FETCH-LOGICAL-a351t-87b70e0c6dff3cd337fa8a15f11c2a32d02984bda4c15962ba3494e3b35107043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp057339y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp057339y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16526612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pakoulev, Andrei V</creatorcontrib><creatorcontrib>Rickard, Mark A</creatorcontrib><creatorcontrib>Meyer, Kent A</creatorcontrib><creatorcontrib>Kornau, Kathryn</creatorcontrib><creatorcontrib>Mathew, Nathan A</creatorcontrib><creatorcontrib>Thompson, David E</creatorcontrib><creatorcontrib>Wright, John C</creatorcontrib><title>Mixed Frequency/Time Domain Optical Analogues of Heteronuclear Multidimensional NMR</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Ultrafast spectroscopy is dominated by time domain methods such as pump−probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpt0M9PwjAUB_DGaATRg_-A2UUTD5P-WDd2JChgZGAEL16arutMcVtnuyXw31szghdPr8n7vPeaLwDXCD4giNFwW0MaERLvT0AfUQx9ihE9dW84in0akrgHLqzdQggRwcE56KGQ4jBEuA_WidrJzJsa-d3KSuyHG1VK71GXXFXeqm6U4IU3rnihP1tpPZ17c9lIo6tWFJIbL2mLRmVuprJKO-Ytk7dLcJbzwsqrQx2A9-nTZjL3F6vZ82S88DmhqPFHURpBCUWY5TkRGSFRzkcc0RwhgTnBGcTxKEgzHghE4xCnnARxIEnqpmEEAzIAd93e2mj3e9uwUlkhi4JXUreWhVFEAhwQB-87KIy21sic1UaV3OwZguw3QXZM0Nmbw9I2LWX2Jw-ROeB3QNlG7o59br7cQRJRtnldM_wCP5JlCNnM-dvOc2HZVrfGpWT_OfwDNkyGWA</recordid><startdate>20060316</startdate><enddate>20060316</enddate><creator>Pakoulev, Andrei V</creator><creator>Rickard, Mark A</creator><creator>Meyer, Kent A</creator><creator>Kornau, Kathryn</creator><creator>Mathew, Nathan A</creator><creator>Thompson, David E</creator><creator>Wright, John C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060316</creationdate><title>Mixed Frequency/Time Domain Optical Analogues of Heteronuclear Multidimensional NMR</title><author>Pakoulev, Andrei V ; Rickard, Mark A ; Meyer, Kent A ; Kornau, Kathryn ; Mathew, Nathan A ; Thompson, David E ; Wright, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-87b70e0c6dff3cd337fa8a15f11c2a32d02984bda4c15962ba3494e3b35107043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakoulev, Andrei V</creatorcontrib><creatorcontrib>Rickard, Mark A</creatorcontrib><creatorcontrib>Meyer, Kent A</creatorcontrib><creatorcontrib>Kornau, Kathryn</creatorcontrib><creatorcontrib>Mathew, Nathan A</creatorcontrib><creatorcontrib>Thompson, David E</creatorcontrib><creatorcontrib>Wright, John C</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakoulev, Andrei V</au><au>Rickard, Mark A</au><au>Meyer, Kent A</au><au>Kornau, Kathryn</au><au>Mathew, Nathan A</au><au>Thompson, David E</au><au>Wright, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Frequency/Time Domain Optical Analogues of Heteronuclear Multidimensional NMR</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2006-03-16</date><risdate>2006</risdate><volume>110</volume><issue>10</issue><spage>3352</spage><epage>3355</epage><pages>3352-3355</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Ultrafast spectroscopy is dominated by time domain methods such as pump−probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16526612</pmid><doi>10.1021/jp057339y</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-03, Vol.110 (10), p.3352-3355
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_67734243
source ACS Publications
title Mixed Frequency/Time Domain Optical Analogues of Heteronuclear Multidimensional NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Frequency/Time%20Domain%20Optical%20Analogues%20of%20Heteronuclear%20Multidimensional%20NMR&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Pakoulev,%20Andrei%20V&rft.date=2006-03-16&rft.volume=110&rft.issue=10&rft.spage=3352&rft.epage=3355&rft.pages=3352-3355&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp057339y&rft_dat=%3Cproquest_cross%3E67734243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67734243&rft_id=info:pmid/16526612&rfr_iscdi=true