Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation

Background: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2005-04, Vol.15 (7), p.616-623
Hauptverfasser: Steinacher, Roland, Schär, Primo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 7
container_start_page 616
container_title Current biology
container_volume 15
creator Steinacher, Roland
Schär, Primo
description Background: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. Results: We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G•T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-teminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. Conclusion: Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.
doi_str_mv 10.1016/j.cub.2005.02.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67730677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982205002277</els_id><sourcerecordid>67730677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-63bfcfa0e4a385ba3f4325f10c363cbbcbd35c0f40672154b49cef1395e82eb53</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCD2CDvGKX4GceYlUN9CEVikq7tmznuvUosVs7Qcq_x6MZiR1s7pGuvnMW5yD0gZKaEtp83tV2MTUjRNaE1USKV2hDu7aviBDyNdqQviFV3zF2gk5z3hFCWdc3b9EJlR3jkvMNchdLsLOPQY9-XnF0-GqZdMD3T-vkA-CvP87x5bjamNdRZ8B38LL4BBn_evh-W93B4zLqGQa8fdLhsbx9wD9TnKHoNgYX06T36e_QG6fHDO-PeoYeLr7db6-qm9vL6-35TWVFT-eq4cZZpwkIzTtpNHeCM-kosbzh1hhrBi4tcYI0LaNSGNFbcJT3EjoGRvIz9OmQ-5ziywJ5VpPPFsZRB4hLVk3bcrI__wNpK1gjKCsgPYA2xZwTOPWc_KTTqihR-xXUTpUV1H4FRZgqKxTPx2P4YiYY_jqOtRfgywGA0sVvD0ll6yFYGEq3dlZD9P-I_wPTDZh1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17426412</pqid></control><display><type>article</type><title>Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Steinacher, Roland ; Schär, Primo</creator><creatorcontrib>Steinacher, Roland ; Schär, Primo</creatorcontrib><description>Background: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. Results: We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G•T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-teminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. Conclusion: Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2005.02.054</identifier><identifier>PMID: 15823533</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Blotting, Western ; DNA Primers ; DNA Repair - physiology ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Electrophoretic Mobility Shift Assay ; Genetic Vectors ; Humans ; Models, Biological ; Protein Conformation ; Protein Structure, Tertiary ; Small Ubiquitin-Related Modifier Proteins - metabolism ; SUMO-1 Protein ; Thymine DNA Glycosylase - genetics ; Thymine DNA Glycosylase - metabolism</subject><ispartof>Current biology, 2005-04, Vol.15 (7), p.616-623</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-63bfcfa0e4a385ba3f4325f10c363cbbcbd35c0f40672154b49cef1395e82eb53</citedby><cites>FETCH-LOGICAL-c491t-63bfcfa0e4a385ba3f4325f10c363cbbcbd35c0f40672154b49cef1395e82eb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2005.02.054$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15823533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinacher, Roland</creatorcontrib><creatorcontrib>Schär, Primo</creatorcontrib><title>Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Background: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. Results: We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G•T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-teminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. Conclusion: Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.</description><subject>Blotting, Western</subject><subject>DNA Primers</subject><subject>DNA Repair - physiology</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Small Ubiquitin-Related Modifier Proteins - metabolism</subject><subject>SUMO-1 Protein</subject><subject>Thymine DNA Glycosylase - genetics</subject><subject>Thymine DNA Glycosylase - metabolism</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EotPCD2CDvGKX4GceYlUN9CEVikq7tmznuvUosVs7Qcq_x6MZiR1s7pGuvnMW5yD0gZKaEtp83tV2MTUjRNaE1USKV2hDu7aviBDyNdqQviFV3zF2gk5z3hFCWdc3b9EJlR3jkvMNchdLsLOPQY9-XnF0-GqZdMD3T-vkA-CvP87x5bjamNdRZ8B38LL4BBn_evh-W93B4zLqGQa8fdLhsbx9wD9TnKHoNgYX06T36e_QG6fHDO-PeoYeLr7db6-qm9vL6-35TWVFT-eq4cZZpwkIzTtpNHeCM-kosbzh1hhrBi4tcYI0LaNSGNFbcJT3EjoGRvIz9OmQ-5ziywJ5VpPPFsZRB4hLVk3bcrI__wNpK1gjKCsgPYA2xZwTOPWc_KTTqihR-xXUTpUV1H4FRZgqKxTPx2P4YiYY_jqOtRfgywGA0sVvD0ll6yFYGEq3dlZD9P-I_wPTDZh1</recordid><startdate>20050412</startdate><enddate>20050412</enddate><creator>Steinacher, Roland</creator><creator>Schär, Primo</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20050412</creationdate><title>Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation</title><author>Steinacher, Roland ; Schär, Primo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-63bfcfa0e4a385ba3f4325f10c363cbbcbd35c0f40672154b49cef1395e82eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Blotting, Western</topic><topic>DNA Primers</topic><topic>DNA Repair - physiology</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Small Ubiquitin-Related Modifier Proteins - metabolism</topic><topic>SUMO-1 Protein</topic><topic>Thymine DNA Glycosylase - genetics</topic><topic>Thymine DNA Glycosylase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinacher, Roland</creatorcontrib><creatorcontrib>Schär, Primo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinacher, Roland</au><au>Schär, Primo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2005-04-12</date><risdate>2005</risdate><volume>15</volume><issue>7</issue><spage>616</spage><epage>623</epage><pages>616-623</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Background: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. Results: We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G•T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-teminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. Conclusion: Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>15823533</pmid><doi>10.1016/j.cub.2005.02.054</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2005-04, Vol.15 (7), p.616-623
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_67730677
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB Electronic Journals Library
subjects Blotting, Western
DNA Primers
DNA Repair - physiology
DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Electrophoretic Mobility Shift Assay
Genetic Vectors
Humans
Models, Biological
Protein Conformation
Protein Structure, Tertiary
Small Ubiquitin-Related Modifier Proteins - metabolism
SUMO-1 Protein
Thymine DNA Glycosylase - genetics
Thymine DNA Glycosylase - metabolism
title Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionality%20of%20Human%20Thymine%20DNA%20Glycosylase%20Requires%20SUMO-Regulated%20Changes%20in%20Protein%20Conformation&rft.jtitle=Current%20biology&rft.au=Steinacher,%20Roland&rft.date=2005-04-12&rft.volume=15&rft.issue=7&rft.spage=616&rft.epage=623&rft.pages=616-623&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2005.02.054&rft_dat=%3Cproquest_cross%3E67730677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17426412&rft_id=info:pmid/15823533&rft_els_id=S0960982205002277&rfr_iscdi=true