Exploring the diversity of complex metabolic networks
Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2005-04, Vol.21 (8), p.1603-1609 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1609 |
---|---|
container_issue | 8 |
container_start_page | 1603 |
container_title | Bioinformatics |
container_volume | 21 |
creator | Hatzimanikatis, Vassily Li, Chunhui Ionita, Justin A. Henry, Christopher S. Jankowski, Matthew D. Broadbelt, Linda J. |
description | Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications |
doi_str_mv | 10.1093/bioinformatics/bti213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67721657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67721657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</originalsourceid><addsrcrecordid>eNqF0MtOGzEUBmCrAhVIeQSqEVLZDRyPr7NE4a4gNm1VsbE8jk0NM-PUdkp4e1wlKiqbrmzJ3zny_yN0gOEYQ0tOOh_86EIcdPYmnXTZN5h8QLuYcqgbYO1WuRMuaiqB7KC9lB4BGKaUfkQ7mHFMKMAuYuerRR-iHx-q_NNWc__bxuTzSxVcZcKw6O2qGmzWXei9qUabn0N8Sp_QttN9svubc4K-XZx_nV7Vs7vL6-nprDaM8lzrpmsld850HQhiHGfSgLMgWxDQaKNJ22hGRWcxYAnWWSk0kWWA0HkrJZmgo_XeRQy_ljZlNfhkbN_r0YZlUlyIBnMm_guxYEQySgs8fAcfwzKOJYTC5a-UAecFsTUyMaQUrVOL6AcdXxQG9ad99W_7at1-mfu8Wb7sBjt_m9rUXcCXDdDJ6N5FPRqf3hwXmJVIxdVr51O2q7_vOj6VyEQwdfXjXpEbetays1v1nbwCvMqhZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198645066</pqid></control><display><type>article</type><title>Exploring the diversity of complex metabolic networks</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Hatzimanikatis, Vassily ; Li, Chunhui ; Ionita, Justin A. ; Henry, Christopher S. ; Jankowski, Matthew D. ; Broadbelt, Linda J.</creator><creatorcontrib>Hatzimanikatis, Vassily ; Li, Chunhui ; Ionita, Justin A. ; Henry, Christopher S. ; Jankowski, Matthew D. ; Broadbelt, Linda J.</creatorcontrib><description>Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bti213</identifier><identifier>PMID: 15613400</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Amino Acids, Aromatic - metabolism ; Animals ; Biodiversity ; Biological and medical sciences ; Computer Graphics ; Computer Simulation ; Energy Metabolism - physiology ; Feasibility Studies ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Biological ; Models, Chemical ; Multienzyme Complexes - metabolism ; Signal Transduction - physiology ; User-Computer Interface</subject><ispartof>Bioinformatics, 2005-04, Vol.21 (8), p.1603-1609</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 15, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</citedby><cites>FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16715772$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15613400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hatzimanikatis, Vassily</creatorcontrib><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Ionita, Justin A.</creatorcontrib><creatorcontrib>Henry, Christopher S.</creatorcontrib><creatorcontrib>Jankowski, Matthew D.</creatorcontrib><creatorcontrib>Broadbelt, Linda J.</creatorcontrib><title>Exploring the diversity of complex metabolic networks</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications</description><subject>Amino Acids, Aromatic - metabolism</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Energy Metabolism - physiology</subject><subject>Feasibility Studies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>User-Computer Interface</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtOGzEUBmCrAhVIeQSqEVLZDRyPr7NE4a4gNm1VsbE8jk0NM-PUdkp4e1wlKiqbrmzJ3zny_yN0gOEYQ0tOOh_86EIcdPYmnXTZN5h8QLuYcqgbYO1WuRMuaiqB7KC9lB4BGKaUfkQ7mHFMKMAuYuerRR-iHx-q_NNWc__bxuTzSxVcZcKw6O2qGmzWXei9qUabn0N8Sp_QttN9svubc4K-XZx_nV7Vs7vL6-nprDaM8lzrpmsld850HQhiHGfSgLMgWxDQaKNJ22hGRWcxYAnWWSk0kWWA0HkrJZmgo_XeRQy_ljZlNfhkbN_r0YZlUlyIBnMm_guxYEQySgs8fAcfwzKOJYTC5a-UAecFsTUyMaQUrVOL6AcdXxQG9ad99W_7at1-mfu8Wb7sBjt_m9rUXcCXDdDJ6N5FPRqf3hwXmJVIxdVr51O2q7_vOj6VyEQwdfXjXpEbetays1v1nbwCvMqhZA</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Hatzimanikatis, Vassily</creator><creator>Li, Chunhui</creator><creator>Ionita, Justin A.</creator><creator>Henry, Christopher S.</creator><creator>Jankowski, Matthew D.</creator><creator>Broadbelt, Linda J.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050415</creationdate><title>Exploring the diversity of complex metabolic networks</title><author>Hatzimanikatis, Vassily ; Li, Chunhui ; Ionita, Justin A. ; Henry, Christopher S. ; Jankowski, Matthew D. ; Broadbelt, Linda J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acids, Aromatic - metabolism</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Energy Metabolism - physiology</topic><topic>Feasibility Studies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatzimanikatis, Vassily</creatorcontrib><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Ionita, Justin A.</creatorcontrib><creatorcontrib>Henry, Christopher S.</creatorcontrib><creatorcontrib>Jankowski, Matthew D.</creatorcontrib><creatorcontrib>Broadbelt, Linda J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatzimanikatis, Vassily</au><au>Li, Chunhui</au><au>Ionita, Justin A.</au><au>Henry, Christopher S.</au><au>Jankowski, Matthew D.</au><au>Broadbelt, Linda J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the diversity of complex metabolic networks</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2005-04-15</date><risdate>2005</risdate><volume>21</volume><issue>8</issue><spage>1603</spage><epage>1609</epage><pages>1603-1609</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15613400</pmid><doi>10.1093/bioinformatics/bti213</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2005-04, Vol.21 (8), p.1603-1609 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_67721657 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; Alma/SFX Local Collection |
subjects | Amino Acids, Aromatic - metabolism Animals Biodiversity Biological and medical sciences Computer Graphics Computer Simulation Energy Metabolism - physiology Feasibility Studies Fundamental and applied biological sciences. Psychology General aspects Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Biological Models, Chemical Multienzyme Complexes - metabolism Signal Transduction - physiology User-Computer Interface |
title | Exploring the diversity of complex metabolic networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20diversity%20of%20complex%20metabolic%20networks&rft.jtitle=Bioinformatics&rft.au=Hatzimanikatis,%20Vassily&rft.date=2005-04-15&rft.volume=21&rft.issue=8&rft.spage=1603&rft.epage=1609&rft.pages=1603-1609&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bti213&rft_dat=%3Cproquest_cross%3E67721657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198645066&rft_id=info:pmid/15613400&rfr_iscdi=true |