Exploring the diversity of complex metabolic networks

Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2005-04, Vol.21 (8), p.1603-1609
Hauptverfasser: Hatzimanikatis, Vassily, Li, Chunhui, Ionita, Justin A., Henry, Christopher S., Jankowski, Matthew D., Broadbelt, Linda J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1609
container_issue 8
container_start_page 1603
container_title Bioinformatics
container_volume 21
creator Hatzimanikatis, Vassily
Li, Chunhui
Ionita, Justin A.
Henry, Christopher S.
Jankowski, Matthew D.
Broadbelt, Linda J.
description Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications
doi_str_mv 10.1093/bioinformatics/bti213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67721657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67721657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</originalsourceid><addsrcrecordid>eNqF0MtOGzEUBmCrAhVIeQSqEVLZDRyPr7NE4a4gNm1VsbE8jk0NM-PUdkp4e1wlKiqbrmzJ3zny_yN0gOEYQ0tOOh_86EIcdPYmnXTZN5h8QLuYcqgbYO1WuRMuaiqB7KC9lB4BGKaUfkQ7mHFMKMAuYuerRR-iHx-q_NNWc__bxuTzSxVcZcKw6O2qGmzWXei9qUabn0N8Sp_QttN9svubc4K-XZx_nV7Vs7vL6-nprDaM8lzrpmsld850HQhiHGfSgLMgWxDQaKNJ22hGRWcxYAnWWSk0kWWA0HkrJZmgo_XeRQy_ljZlNfhkbN_r0YZlUlyIBnMm_guxYEQySgs8fAcfwzKOJYTC5a-UAecFsTUyMaQUrVOL6AcdXxQG9ad99W_7at1-mfu8Wb7sBjt_m9rUXcCXDdDJ6N5FPRqf3hwXmJVIxdVr51O2q7_vOj6VyEQwdfXjXpEbetays1v1nbwCvMqhZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198645066</pqid></control><display><type>article</type><title>Exploring the diversity of complex metabolic networks</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Hatzimanikatis, Vassily ; Li, Chunhui ; Ionita, Justin A. ; Henry, Christopher S. ; Jankowski, Matthew D. ; Broadbelt, Linda J.</creator><creatorcontrib>Hatzimanikatis, Vassily ; Li, Chunhui ; Ionita, Justin A. ; Henry, Christopher S. ; Jankowski, Matthew D. ; Broadbelt, Linda J.</creatorcontrib><description>Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bti213</identifier><identifier>PMID: 15613400</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Amino Acids, Aromatic - metabolism ; Animals ; Biodiversity ; Biological and medical sciences ; Computer Graphics ; Computer Simulation ; Energy Metabolism - physiology ; Feasibility Studies ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Biological ; Models, Chemical ; Multienzyme Complexes - metabolism ; Signal Transduction - physiology ; User-Computer Interface</subject><ispartof>Bioinformatics, 2005-04, Vol.21 (8), p.1603-1609</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 15, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</citedby><cites>FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16715772$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15613400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hatzimanikatis, Vassily</creatorcontrib><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Ionita, Justin A.</creatorcontrib><creatorcontrib>Henry, Christopher S.</creatorcontrib><creatorcontrib>Jankowski, Matthew D.</creatorcontrib><creatorcontrib>Broadbelt, Linda J.</creatorcontrib><title>Exploring the diversity of complex metabolic networks</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications</description><subject>Amino Acids, Aromatic - metabolism</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Energy Metabolism - physiology</subject><subject>Feasibility Studies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>User-Computer Interface</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtOGzEUBmCrAhVIeQSqEVLZDRyPr7NE4a4gNm1VsbE8jk0NM-PUdkp4e1wlKiqbrmzJ3zny_yN0gOEYQ0tOOh_86EIcdPYmnXTZN5h8QLuYcqgbYO1WuRMuaiqB7KC9lB4BGKaUfkQ7mHFMKMAuYuerRR-iHx-q_NNWc__bxuTzSxVcZcKw6O2qGmzWXei9qUabn0N8Sp_QttN9svubc4K-XZx_nV7Vs7vL6-nprDaM8lzrpmsld850HQhiHGfSgLMgWxDQaKNJ22hGRWcxYAnWWSk0kWWA0HkrJZmgo_XeRQy_ljZlNfhkbN_r0YZlUlyIBnMm_guxYEQySgs8fAcfwzKOJYTC5a-UAecFsTUyMaQUrVOL6AcdXxQG9ad99W_7at1-mfu8Wb7sBjt_m9rUXcCXDdDJ6N5FPRqf3hwXmJVIxdVr51O2q7_vOj6VyEQwdfXjXpEbetays1v1nbwCvMqhZA</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Hatzimanikatis, Vassily</creator><creator>Li, Chunhui</creator><creator>Ionita, Justin A.</creator><creator>Henry, Christopher S.</creator><creator>Jankowski, Matthew D.</creator><creator>Broadbelt, Linda J.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050415</creationdate><title>Exploring the diversity of complex metabolic networks</title><author>Hatzimanikatis, Vassily ; Li, Chunhui ; Ionita, Justin A. ; Henry, Christopher S. ; Jankowski, Matthew D. ; Broadbelt, Linda J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-a2b986ffcbb073cf658c0fe0890702aca392a547be10180efe87a38ffc34d9883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acids, Aromatic - metabolism</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Energy Metabolism - physiology</topic><topic>Feasibility Studies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatzimanikatis, Vassily</creatorcontrib><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Ionita, Justin A.</creatorcontrib><creatorcontrib>Henry, Christopher S.</creatorcontrib><creatorcontrib>Jankowski, Matthew D.</creatorcontrib><creatorcontrib>Broadbelt, Linda J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatzimanikatis, Vassily</au><au>Li, Chunhui</au><au>Ionita, Justin A.</au><au>Henry, Christopher S.</au><au>Jankowski, Matthew D.</au><au>Broadbelt, Linda J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the diversity of complex metabolic networks</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2005-04-15</date><risdate>2005</risdate><volume>21</volume><issue>8</issue><spage>1603</spage><epage>1609</epage><pages>1603-1609</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. Results: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75 000 novel biochemical routes from chorismate to phenylalanine, more than 350 000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. Availability: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). Contact: vassily@northwestern.edu or broadbelt@northwestern.edu Supplementary information: http://systemsbiology.northwestern.edu/BNICE/publications</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15613400</pmid><doi>10.1093/bioinformatics/bti213</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2005-04, Vol.21 (8), p.1603-1609
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_67721657
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; Alma/SFX Local Collection
subjects Amino Acids, Aromatic - metabolism
Animals
Biodiversity
Biological and medical sciences
Computer Graphics
Computer Simulation
Energy Metabolism - physiology
Feasibility Studies
Fundamental and applied biological sciences. Psychology
General aspects
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Biological
Models, Chemical
Multienzyme Complexes - metabolism
Signal Transduction - physiology
User-Computer Interface
title Exploring the diversity of complex metabolic networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20diversity%20of%20complex%20metabolic%20networks&rft.jtitle=Bioinformatics&rft.au=Hatzimanikatis,%20Vassily&rft.date=2005-04-15&rft.volume=21&rft.issue=8&rft.spage=1603&rft.epage=1609&rft.pages=1603-1609&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bti213&rft_dat=%3Cproquest_cross%3E67721657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198645066&rft_id=info:pmid/15613400&rfr_iscdi=true