Meta-Analytic Structural Equation Modeling: A Two-Stage Approach

To synthesize studies that use structural equation modeling (SEM), researchers usually use Pearson correlations (univariate r ), Fisher z scores (univariate z ), or generalized least squares (GLS) to combine the correlation matrices. The pooled correlation matrix is then analyzed by the use of SEM....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 2005-03, Vol.10 (1), p.40-64
Hauptverfasser: Cheung, Mike W.-L, Chan, Wai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To synthesize studies that use structural equation modeling (SEM), researchers usually use Pearson correlations (univariate r ), Fisher z scores (univariate z ), or generalized least squares (GLS) to combine the correlation matrices. The pooled correlation matrix is then analyzed by the use of SEM. Questionable inferences may occur for these ad hoc procedures. A 2-stage structural equation modeling (TSSEM) method is proposed to incorporate meta-analytic techniques and SEM into a unified framework. Simulation results reveal that the univariate- r, univariate- z, and TSSEM methods perform well in testing the homogeneity of correlation matrices and estimating the pooled correlation matrix. When fitting SEM, only TSSEM works well. The GLS method performed poorly in small to medium samples.
ISSN:1082-989X
1939-1463
DOI:10.1037/1082-989X.10.1.40