Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion

The tick-borne encephalitis (TBE) virus has two membrane glycoproteins (prM and E), which each has one N-linked glycan. Constructs that express prM and E proteins of TBE virus have been shown to produce virus-like particles (VLPs), which have surface properties that are similar to those of infectiou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccine 2005-04, Vol.23 (23), p.3043-3052
Hauptverfasser: Goto, Akiko, Yoshii, Kentarou, Obara, Mayumi, Ueki, Tomotaka, Mizutani, Tetsuya, Kariwa, Hiroaki, Takashima, Ikuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tick-borne encephalitis (TBE) virus has two membrane glycoproteins (prM and E), which each has one N-linked glycan. Constructs that express prM and E proteins of TBE virus have been shown to produce virus-like particles (VLPs), which have surface properties that are similar to those of infectious viruses. To reveal the function of glycosylation of the TBE virus prM and E proteins in the secretion of VLPs, we expressed glycosylation-mutated prM and E proteins and compared the secretion levels and biological properties of the VLPs. In the prM protein glycosylation-deficient mutant, the level of secreted E protein was reduced to 60% of the wild-type level. On the other hand, in the E or prM-E protein glycosylation-deficient mutant, the level of secreted E protein was reduced to 10% of the wild-type level. Furthermore, the mutant which was glycosylated at positions 66 and 154 in protein E, the level of secreted E protein was four-fold higher than that of the wild-type. However, in the mutant which was glycosylated at position 66 only, E protein secretion was reduced to only 10% of the wild-type level. These data suggest that the glycan associated with the N-linked glycosylation site at position 154 in protein E plays an important role in VLP secretion.
ISSN:0264-410X
1873-2518
DOI:10.1016/j.vaccine.2004.11.068