Adsorption energies for a nanoporous carbon from gas–solid chromatography and molecular mechanics

Gas–solid chromatography was used to obtain second gas–solid virial coefficients, B 2 s , in the temperature range 342–613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2006-04, Vol.296 (1), p.41-50
Hauptverfasser: Rybolt, Thomas R., Ziegler, Katherine A., Thomas, Howard E., Boyd, Jennifer L., Ridgeway, Mark E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 41
container_title Journal of colloid and interface science
container_volume 296
creator Rybolt, Thomas R.
Ziegler, Katherine A.
Thomas, Howard E.
Boyd, Jennifer L.
Ridgeway, Mark E.
description Gas–solid chromatography was used to obtain second gas–solid virial coefficients, B 2 s , in the temperature range 342–613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N 2 BET surface area of 995 m 2/g. The temperature dependence of B 2 s was used to determine experimental values of the gas–solid interaction energy, E ∗ , for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas–solid interaction energy, E cal ∗ , for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E cal ∗ , were compared and correlated to the experimental E ∗ values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E cal ∗ and E ∗ values was provided by a 0.50 nm nanoporous model using MM2 parameters.
doi_str_mv 10.1016/j.jcis.2005.08.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67712887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979705009082</els_id><sourcerecordid>67712887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-fc68bbfd280a38a3a82900f33660a93a29a8c1c7140078e481b23d9bebc43acd3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EokvhBTggX-gt6ThOYkfiUlWUIlXiAmdrMnF2vUrsYGeReuMd-oY8CV7tCm49jTT6_l8zH2PvBZQCRHu9L_fkUlkBNCXoEhr1gm0EdE2hBMiXbANQiaJTnbpgb1LaAwjRNN1rdiFa0epawobRzZBCXFYXPLfexq2ziY8hcuQefVhCDIfECWOfgTGGmW8x_fn9lMLkBk67vME1bCMuu0eOfuBzmCwdJox8trRD7yi9Za9GnJJ9d56X7Mfd5--398XDty9fb28eCqobWIuRWt3341BpQKlRoq46gFHKtgXsJFYdahKkRA2gtK216Cs5dL3tqZZIg7xkV6feJYafB5tWM7tEdprQ2_yFaZUSldYqg9UJpBhSinY0S3QzxkcjwBzVmr05qjVHtQa0yWpz6MO5_dDPdvgfObvMwMczgIlwGiP6Y8c_TrVKCNCZ-3TibHbxy9loEjnryQ4uWlrNENxzd_wF6oKaDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67712887</pqid></control><display><type>article</type><title>Adsorption energies for a nanoporous carbon from gas–solid chromatography and molecular mechanics</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Rybolt, Thomas R. ; Ziegler, Katherine A. ; Thomas, Howard E. ; Boyd, Jennifer L. ; Ridgeway, Mark E.</creator><creatorcontrib>Rybolt, Thomas R. ; Ziegler, Katherine A. ; Thomas, Howard E. ; Boyd, Jennifer L. ; Ridgeway, Mark E.</creatorcontrib><description>Gas–solid chromatography was used to obtain second gas–solid virial coefficients, B 2 s , in the temperature range 342–613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N 2 BET surface area of 995 m 2/g. The temperature dependence of B 2 s was used to determine experimental values of the gas–solid interaction energy, E ∗ , for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas–solid interaction energy, E cal ∗ , for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E cal ∗ , were compared and correlated to the experimental E ∗ values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E cal ∗ and E ∗ values was provided by a 0.50 nm nanoporous model using MM2 parameters.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2005.08.057</identifier><identifier>PMID: 16168430</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Adsorption ; Adsorption energy ; carbon ; Chemistry ; Colloidal state and disperse state ; correlations of ; Exact sciences and technology ; formula omitted ; gas–solid ; gas–solid chromatography ; General and physical chemistry ; Henry's law ; Molecular mechanics surface energy ; Porous materials ; Surface physical chemistry ; Virial coefficients</subject><ispartof>Journal of colloid and interface science, 2006-04, Vol.296 (1), p.41-50</ispartof><rights>2005 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-fc68bbfd280a38a3a82900f33660a93a29a8c1c7140078e481b23d9bebc43acd3</citedby><cites>FETCH-LOGICAL-c450t-fc68bbfd280a38a3a82900f33660a93a29a8c1c7140078e481b23d9bebc43acd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979705009082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17671108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16168430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rybolt, Thomas R.</creatorcontrib><creatorcontrib>Ziegler, Katherine A.</creatorcontrib><creatorcontrib>Thomas, Howard E.</creatorcontrib><creatorcontrib>Boyd, Jennifer L.</creatorcontrib><creatorcontrib>Ridgeway, Mark E.</creatorcontrib><title>Adsorption energies for a nanoporous carbon from gas–solid chromatography and molecular mechanics</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Gas–solid chromatography was used to obtain second gas–solid virial coefficients, B 2 s , in the temperature range 342–613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N 2 BET surface area of 995 m 2/g. The temperature dependence of B 2 s was used to determine experimental values of the gas–solid interaction energy, E ∗ , for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas–solid interaction energy, E cal ∗ , for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E cal ∗ , were compared and correlated to the experimental E ∗ values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E cal ∗ and E ∗ values was provided by a 0.50 nm nanoporous model using MM2 parameters.</description><subject>Adsorption</subject><subject>Adsorption energy</subject><subject>carbon</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>correlations of</subject><subject>Exact sciences and technology</subject><subject>formula omitted</subject><subject>gas–solid</subject><subject>gas–solid chromatography</subject><subject>General and physical chemistry</subject><subject>Henry's law</subject><subject>Molecular mechanics surface energy</subject><subject>Porous materials</subject><subject>Surface physical chemistry</subject><subject>Virial coefficients</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi0EokvhBTggX-gt6ThOYkfiUlWUIlXiAmdrMnF2vUrsYGeReuMd-oY8CV7tCm49jTT6_l8zH2PvBZQCRHu9L_fkUlkBNCXoEhr1gm0EdE2hBMiXbANQiaJTnbpgb1LaAwjRNN1rdiFa0epawobRzZBCXFYXPLfexq2ziY8hcuQefVhCDIfECWOfgTGGmW8x_fn9lMLkBk67vME1bCMuu0eOfuBzmCwdJox8trRD7yi9Za9GnJJ9d56X7Mfd5--398XDty9fb28eCqobWIuRWt3341BpQKlRoq46gFHKtgXsJFYdahKkRA2gtK216Cs5dL3tqZZIg7xkV6feJYafB5tWM7tEdprQ2_yFaZUSldYqg9UJpBhSinY0S3QzxkcjwBzVmr05qjVHtQa0yWpz6MO5_dDPdvgfObvMwMczgIlwGiP6Y8c_TrVKCNCZ-3TibHbxy9loEjnryQ4uWlrNENxzd_wF6oKaDg</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Rybolt, Thomas R.</creator><creator>Ziegler, Katherine A.</creator><creator>Thomas, Howard E.</creator><creator>Boyd, Jennifer L.</creator><creator>Ridgeway, Mark E.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060401</creationdate><title>Adsorption energies for a nanoporous carbon from gas–solid chromatography and molecular mechanics</title><author>Rybolt, Thomas R. ; Ziegler, Katherine A. ; Thomas, Howard E. ; Boyd, Jennifer L. ; Ridgeway, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-fc68bbfd280a38a3a82900f33660a93a29a8c1c7140078e481b23d9bebc43acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Adsorption energy</topic><topic>carbon</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>correlations of</topic><topic>Exact sciences and technology</topic><topic>formula omitted</topic><topic>gas–solid</topic><topic>gas–solid chromatography</topic><topic>General and physical chemistry</topic><topic>Henry's law</topic><topic>Molecular mechanics surface energy</topic><topic>Porous materials</topic><topic>Surface physical chemistry</topic><topic>Virial coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rybolt, Thomas R.</creatorcontrib><creatorcontrib>Ziegler, Katherine A.</creatorcontrib><creatorcontrib>Thomas, Howard E.</creatorcontrib><creatorcontrib>Boyd, Jennifer L.</creatorcontrib><creatorcontrib>Ridgeway, Mark E.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rybolt, Thomas R.</au><au>Ziegler, Katherine A.</au><au>Thomas, Howard E.</au><au>Boyd, Jennifer L.</au><au>Ridgeway, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption energies for a nanoporous carbon from gas–solid chromatography and molecular mechanics</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>296</volume><issue>1</issue><spage>41</spage><epage>50</epage><pages>41-50</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Gas–solid chromatography was used to obtain second gas–solid virial coefficients, B 2 s , in the temperature range 342–613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N 2 BET surface area of 995 m 2/g. The temperature dependence of B 2 s was used to determine experimental values of the gas–solid interaction energy, E ∗ , for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas–solid interaction energy, E cal ∗ , for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E cal ∗ , were compared and correlated to the experimental E ∗ values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E cal ∗ and E ∗ values was provided by a 0.50 nm nanoporous model using MM2 parameters.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>16168430</pmid><doi>10.1016/j.jcis.2005.08.057</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2006-04, Vol.296 (1), p.41-50
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_67712887
source Elsevier ScienceDirect Journals Collection
subjects Adsorption
Adsorption energy
carbon
Chemistry
Colloidal state and disperse state
correlations of
Exact sciences and technology
formula omitted
gas–solid
gas–solid chromatography
General and physical chemistry
Henry's law
Molecular mechanics surface energy
Porous materials
Surface physical chemistry
Virial coefficients
title Adsorption energies for a nanoporous carbon from gas–solid chromatography and molecular mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20energies%20for%20a%20nanoporous%20carbon%20from%20gas%E2%80%93solid%20chromatography%20and%20molecular%20mechanics&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Rybolt,%20Thomas%20R.&rft.date=2006-04-01&rft.volume=296&rft.issue=1&rft.spage=41&rft.epage=50&rft.pages=41-50&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2005.08.057&rft_dat=%3Cproquest_cross%3E67712887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67712887&rft_id=info:pmid/16168430&rft_els_id=S0021979705009082&rfr_iscdi=true