Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM

We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the ds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2006-01, Vol.131, p.367-376
Hauptverfasser: Cohen, Hezy, Nogues, Claude, Uilien, Daniela, Daube, Shirley, Naaman, Ron, Porath, Danny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue
container_start_page 367
container_title Faraday discussions
container_volume 131
creator Cohen, Hezy
Nogues, Claude
Uilien, Daniela
Daube, Shirley
Naaman, Ron
Porath, Danny
description We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.
doi_str_mv 10.1039/b507706k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67709242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67709242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</originalsourceid><addsrcrecordid>eNpFkLtOwzAYRi0EolCQeALkCbEYfK8zltICosACc-T4AgEnLnaCVJ6eVK3E9F--o284AJwRfEUwK64rgScTLL_2wBFhkiPBC7W_2UWBpOR4BI5z_sQYyyE9BCMiBaFM8SPQzIMzXaqNDtB86KRN51L9q7s6tjB6mF3wSOfsmio4C3PdvgeHoG4ttLEffih3abiG7PZ5CpvYxqDXLmXYb1hoYmt709U_Dk4XTyfgwOuQ3elujsHbYv46u0fLl7uH2XSJDJOTDhGMtSTWC2qF0sp6WzkjhGFqIjiTtKJEes4r6bHynAlMLC689tJQ5RUlbAwutr2rFL97l7uyqbNxIejWxT6XcrBVUE4H8HILmhRzTs6Xq1Q3Oq1LgsuN2vJmq_ZxQM93nX3VOPsP7lyyP-9YdEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67709242</pqid></control><display><type>article</type><title>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cohen, Hezy ; Nogues, Claude ; Uilien, Daniela ; Daube, Shirley ; Naaman, Ron ; Porath, Danny</creator><creatorcontrib>Cohen, Hezy ; Nogues, Claude ; Uilien, Daniela ; Daube, Shirley ; Naaman, Ron ; Porath, Danny</creatorcontrib><description>We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/b507706k</identifier><identifier>PMID: 16512384</identifier><language>eng</language><publisher>England</publisher><subject>Adsorption ; Crystallization - methods ; DNA - analysis ; DNA - chemistry ; DNA - ultrastructure ; Electric Conductivity ; Electrochemistry - methods ; Microelectrodes ; Microscopy, Atomic Force - methods ; Stress, Mechanical ; Surface Properties</subject><ispartof>Faraday discussions, 2006-01, Vol.131, p.367-376</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</citedby><cites>FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16512384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Hezy</creatorcontrib><creatorcontrib>Nogues, Claude</creatorcontrib><creatorcontrib>Uilien, Daniela</creatorcontrib><creatorcontrib>Daube, Shirley</creatorcontrib><creatorcontrib>Naaman, Ron</creatorcontrib><creatorcontrib>Porath, Danny</creatorcontrib><title>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.</description><subject>Adsorption</subject><subject>Crystallization - methods</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>Electric Conductivity</subject><subject>Electrochemistry - methods</subject><subject>Microelectrodes</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkLtOwzAYRi0EolCQeALkCbEYfK8zltICosACc-T4AgEnLnaCVJ6eVK3E9F--o284AJwRfEUwK64rgScTLL_2wBFhkiPBC7W_2UWBpOR4BI5z_sQYyyE9BCMiBaFM8SPQzIMzXaqNDtB86KRN51L9q7s6tjB6mF3wSOfsmio4C3PdvgeHoG4ttLEffih3abiG7PZ5CpvYxqDXLmXYb1hoYmt709U_Dk4XTyfgwOuQ3elujsHbYv46u0fLl7uH2XSJDJOTDhGMtSTWC2qF0sp6WzkjhGFqIjiTtKJEes4r6bHynAlMLC689tJQ5RUlbAwutr2rFL97l7uyqbNxIejWxT6XcrBVUE4H8HILmhRzTs6Xq1Q3Oq1LgsuN2vJmq_ZxQM93nX3VOPsP7lyyP-9YdEk</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Cohen, Hezy</creator><creator>Nogues, Claude</creator><creator>Uilien, Daniela</creator><creator>Daube, Shirley</creator><creator>Naaman, Ron</creator><creator>Porath, Danny</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</title><author>Cohen, Hezy ; Nogues, Claude ; Uilien, Daniela ; Daube, Shirley ; Naaman, Ron ; Porath, Danny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Crystallization - methods</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>Electric Conductivity</topic><topic>Electrochemistry - methods</topic><topic>Microelectrodes</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Hezy</creatorcontrib><creatorcontrib>Nogues, Claude</creatorcontrib><creatorcontrib>Uilien, Daniela</creatorcontrib><creatorcontrib>Daube, Shirley</creatorcontrib><creatorcontrib>Naaman, Ron</creatorcontrib><creatorcontrib>Porath, Danny</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Hezy</au><au>Nogues, Claude</au><au>Uilien, Daniela</au><au>Daube, Shirley</au><au>Naaman, Ron</au><au>Porath, Danny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>131</volume><spage>367</spage><epage>376</epage><pages>367-376</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.</abstract><cop>England</cop><pmid>16512384</pmid><doi>10.1039/b507706k</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2006-01, Vol.131, p.367-376
issn 1359-6640
1364-5498
language eng
recordid cdi_proquest_miscellaneous_67709242
source Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Crystallization - methods
DNA - analysis
DNA - chemistry
DNA - ultrastructure
Electric Conductivity
Electrochemistry - methods
Microelectrodes
Microscopy, Atomic Force - methods
Stress, Mechanical
Surface Properties
title Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20characterization%20of%20self-assembled%20single-%20and%20double-stranded%20DNA%20monolayers%20using%20conductive%20AFM&rft.jtitle=Faraday%20discussions&rft.au=Cohen,%20Hezy&rft.date=2006-01-01&rft.volume=131&rft.spage=367&rft.epage=376&rft.pages=367-376&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/b507706k&rft_dat=%3Cproquest_cross%3E67709242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67709242&rft_id=info:pmid/16512384&rfr_iscdi=true