Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM
We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the ds...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2006-01, Vol.131, p.367-376 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 376 |
---|---|
container_issue | |
container_start_page | 367 |
container_title | Faraday discussions |
container_volume | 131 |
creator | Cohen, Hezy Nogues, Claude Uilien, Daniela Daube, Shirley Naaman, Ron Porath, Danny |
description | We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules. |
doi_str_mv | 10.1039/b507706k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67709242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67709242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</originalsourceid><addsrcrecordid>eNpFkLtOwzAYRi0EolCQeALkCbEYfK8zltICosACc-T4AgEnLnaCVJ6eVK3E9F--o284AJwRfEUwK64rgScTLL_2wBFhkiPBC7W_2UWBpOR4BI5z_sQYyyE9BCMiBaFM8SPQzIMzXaqNDtB86KRN51L9q7s6tjB6mF3wSOfsmio4C3PdvgeHoG4ttLEffih3abiG7PZ5CpvYxqDXLmXYb1hoYmt709U_Dk4XTyfgwOuQ3elujsHbYv46u0fLl7uH2XSJDJOTDhGMtSTWC2qF0sp6WzkjhGFqIjiTtKJEes4r6bHynAlMLC689tJQ5RUlbAwutr2rFL97l7uyqbNxIejWxT6XcrBVUE4H8HILmhRzTs6Xq1Q3Oq1LgsuN2vJmq_ZxQM93nX3VOPsP7lyyP-9YdEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67709242</pqid></control><display><type>article</type><title>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cohen, Hezy ; Nogues, Claude ; Uilien, Daniela ; Daube, Shirley ; Naaman, Ron ; Porath, Danny</creator><creatorcontrib>Cohen, Hezy ; Nogues, Claude ; Uilien, Daniela ; Daube, Shirley ; Naaman, Ron ; Porath, Danny</creatorcontrib><description>We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/b507706k</identifier><identifier>PMID: 16512384</identifier><language>eng</language><publisher>England</publisher><subject>Adsorption ; Crystallization - methods ; DNA - analysis ; DNA - chemistry ; DNA - ultrastructure ; Electric Conductivity ; Electrochemistry - methods ; Microelectrodes ; Microscopy, Atomic Force - methods ; Stress, Mechanical ; Surface Properties</subject><ispartof>Faraday discussions, 2006-01, Vol.131, p.367-376</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</citedby><cites>FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16512384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Hezy</creatorcontrib><creatorcontrib>Nogues, Claude</creatorcontrib><creatorcontrib>Uilien, Daniela</creatorcontrib><creatorcontrib>Daube, Shirley</creatorcontrib><creatorcontrib>Naaman, Ron</creatorcontrib><creatorcontrib>Porath, Danny</creatorcontrib><title>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.</description><subject>Adsorption</subject><subject>Crystallization - methods</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>Electric Conductivity</subject><subject>Electrochemistry - methods</subject><subject>Microelectrodes</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkLtOwzAYRi0EolCQeALkCbEYfK8zltICosACc-T4AgEnLnaCVJ6eVK3E9F--o284AJwRfEUwK64rgScTLL_2wBFhkiPBC7W_2UWBpOR4BI5z_sQYyyE9BCMiBaFM8SPQzIMzXaqNDtB86KRN51L9q7s6tjB6mF3wSOfsmio4C3PdvgeHoG4ttLEffih3abiG7PZ5CpvYxqDXLmXYb1hoYmt709U_Dk4XTyfgwOuQ3elujsHbYv46u0fLl7uH2XSJDJOTDhGMtSTWC2qF0sp6WzkjhGFqIjiTtKJEes4r6bHynAlMLC689tJQ5RUlbAwutr2rFL97l7uyqbNxIejWxT6XcrBVUE4H8HILmhRzTs6Xq1Q3Oq1LgsuN2vJmq_ZxQM93nX3VOPsP7lyyP-9YdEk</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Cohen, Hezy</creator><creator>Nogues, Claude</creator><creator>Uilien, Daniela</creator><creator>Daube, Shirley</creator><creator>Naaman, Ron</creator><creator>Porath, Danny</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</title><author>Cohen, Hezy ; Nogues, Claude ; Uilien, Daniela ; Daube, Shirley ; Naaman, Ron ; Porath, Danny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-100a61df52d58a8dfdbec55c38754362b216f44b6f08f43501d09faf6c28f8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Crystallization - methods</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>Electric Conductivity</topic><topic>Electrochemistry - methods</topic><topic>Microelectrodes</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Hezy</creatorcontrib><creatorcontrib>Nogues, Claude</creatorcontrib><creatorcontrib>Uilien, Daniela</creatorcontrib><creatorcontrib>Daube, Shirley</creatorcontrib><creatorcontrib>Naaman, Ron</creatorcontrib><creatorcontrib>Porath, Danny</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Hezy</au><au>Nogues, Claude</au><au>Uilien, Daniela</au><au>Daube, Shirley</au><au>Naaman, Ron</au><au>Porath, Danny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>131</volume><spage>367</spage><epage>376</epage><pages>367-376</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>We recently reported electrical transport measurements through double-stranded (ds)DNA molecules that are embedded in a self-assembled monolayer of single-stranded (ss)DNA and attached to a metal substrate and to a gold nanoparticle (GNP) on opposite ends. The measured current flowing through the dsDNA amounts to 220 nA at 2 V. In the present report we compare electrical transport through an ssDNA monolayer and dsDNA monolayers with and without upper thiol end-groups. The measurements are done with a conductive atomic force microscope (AFM) using various techniques. We find that the ssDNA monolayer is unable to transport current. The dsDNA monolayer without thiols in the upper end can transport low current on rare occasions and the dsDNA monolayer with thiols on both ends can transport significant current but with a much lower reliability and reproducibility than the GNP-connected dsDNA. These results reconfirm the ability of dsDNA to transport electrical current under the appropriate conditions, demonstrate the efficiency of an ssDNA monolayer as an insulating layer, and emphasize the crucial role of an efficient charge injection through covalent bonding for electrical transport in single dsDNA molecules.</abstract><cop>England</cop><pmid>16512384</pmid><doi>10.1039/b507706k</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6640 |
ispartof | Faraday discussions, 2006-01, Vol.131, p.367-376 |
issn | 1359-6640 1364-5498 |
language | eng |
recordid | cdi_proquest_miscellaneous_67709242 |
source | Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorption Crystallization - methods DNA - analysis DNA - chemistry DNA - ultrastructure Electric Conductivity Electrochemistry - methods Microelectrodes Microscopy, Atomic Force - methods Stress, Mechanical Surface Properties |
title | Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20characterization%20of%20self-assembled%20single-%20and%20double-stranded%20DNA%20monolayers%20using%20conductive%20AFM&rft.jtitle=Faraday%20discussions&rft.au=Cohen,%20Hezy&rft.date=2006-01-01&rft.volume=131&rft.spage=367&rft.epage=376&rft.pages=367-376&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/b507706k&rft_dat=%3Cproquest_cross%3E67709242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67709242&rft_id=info:pmid/16512384&rfr_iscdi=true |