Dissociation of Insulin Receptor Expression and Signaling from Caveolin-1 Expression
The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and fu...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-04, Vol.280 (14), p.13483-13486 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13486 |
---|---|
container_issue | 14 |
container_start_page | 13483 |
container_title | The Journal of biological chemistry |
container_volume | 280 |
creator | Wharton, Jonathan Meshulamy, Tova Vallega, Gino Pilch, Paul |
description | The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and function. To help clarify this issue, we created a gain of function situation by expressing caveolin-1 at various levels in HEK-293 cells where the endogenous level of caveolin-1 is very low. We generated four permanent lines of this cell expressing amounts of caveolin-1 ranging from 10 to 40 times that of parental cells. The amount of caveolin-1 in the human embryonic kidney cells expressing the highest caveolin levels is comparable with that of adipocytes, cells that naturally express one of the highest levels of caveolin-1. We measured insulin receptor amount and insulin-dependent receptor autophosphorylation as well as insulin receptor substrate 1 (IRS1) tyrosine phosphorylation as an index of insulin signaling. We found that the insulin receptor level was essentially the same in the parental and all four derived cell lines. Likewise, we determined that insulin-dependent insulin receptor and IRS1 tyrosine phosphorylation was not significantly different in the four cell lines representing parental, low, medium, and high levels of caveolin-1 expression. We conclude that insulin receptor expression and ligand-dependent signaling is independent of caveolin-1 expression. |
doi_str_mv | 10.1074/jbc.M413891200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67702278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819604187</els_id><sourcerecordid>67702278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-61362b6d5111d9342f2a10ef539ee1f1bdc59dd92f6818220cdb5a33d1be916a3</originalsourceid><addsrcrecordid>eNp1kMtLAzEQh4MoWh9Xj7IH8bY1k-xuk6PUJ1QEreAtZJPZNtLd1GTr47830oJenMswzDc_ho-QY6BDoKPi_LU2w_sCuJDAKN0iA6CC57yEl20yoJRBLlkp9sh-jK80VSFhl-xBWUlJuRyQ6aWL0Rune-e7zDfZXRdXC9dlj2hw2fuQXX0uA8b4s9adzZ7crNMJmGVN8G021u_o05jDH_CQ7DR6EfFo0w_I8_XVdHybTx5u7sYXk9wUAH1eAa9YXdkSAKzkBWuYBopNySUiNFBbU0prJWsqAYIxamxdas4t1Cih0vyAnK1zl8G_rTD2qnXR4GKhO_SrqKrRiDI2EgkcrkETfIwBG7UMrtXhSwFVPx5V8qh-PaaDk03yqm7R_uIbcQk4XQNzN5t_uICqdt7MsVVMpMhCAS8ET5hYY5g0vDsMKhqHnUGbTkyvrHf_vfANUa-NBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67702278</pqid></control><display><type>article</type><title>Dissociation of Insulin Receptor Expression and Signaling from Caveolin-1 Expression</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wharton, Jonathan ; Meshulamy, Tova ; Vallega, Gino ; Pilch, Paul</creator><creatorcontrib>Wharton, Jonathan ; Meshulamy, Tova ; Vallega, Gino ; Pilch, Paul</creatorcontrib><description>The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and function. To help clarify this issue, we created a gain of function situation by expressing caveolin-1 at various levels in HEK-293 cells where the endogenous level of caveolin-1 is very low. We generated four permanent lines of this cell expressing amounts of caveolin-1 ranging from 10 to 40 times that of parental cells. The amount of caveolin-1 in the human embryonic kidney cells expressing the highest caveolin levels is comparable with that of adipocytes, cells that naturally express one of the highest levels of caveolin-1. We measured insulin receptor amount and insulin-dependent receptor autophosphorylation as well as insulin receptor substrate 1 (IRS1) tyrosine phosphorylation as an index of insulin signaling. We found that the insulin receptor level was essentially the same in the parental and all four derived cell lines. Likewise, we determined that insulin-dependent insulin receptor and IRS1 tyrosine phosphorylation was not significantly different in the four cell lines representing parental, low, medium, and high levels of caveolin-1 expression. We conclude that insulin receptor expression and ligand-dependent signaling is independent of caveolin-1 expression.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M413891200</identifier><identifier>PMID: 15699039</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adipocytes - cytology ; Adipocytes - metabolism ; Animals ; Caveolin 1 ; Caveolins - genetics ; Caveolins - metabolism ; Cell Line ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Humans ; Insulin - metabolism ; Insulin Receptor Substrate Proteins ; Ligands ; Membrane Proteins - metabolism ; Mice ; Phosphoproteins - metabolism ; Phosphorylation ; Rats ; Receptor, Insulin - genetics ; Receptor, Insulin - metabolism ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2005-04, Vol.280 (14), p.13483-13486</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-61362b6d5111d9342f2a10ef539ee1f1bdc59dd92f6818220cdb5a33d1be916a3</citedby><cites>FETCH-LOGICAL-c411t-61362b6d5111d9342f2a10ef539ee1f1bdc59dd92f6818220cdb5a33d1be916a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15699039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wharton, Jonathan</creatorcontrib><creatorcontrib>Meshulamy, Tova</creatorcontrib><creatorcontrib>Vallega, Gino</creatorcontrib><creatorcontrib>Pilch, Paul</creatorcontrib><title>Dissociation of Insulin Receptor Expression and Signaling from Caveolin-1 Expression</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and function. To help clarify this issue, we created a gain of function situation by expressing caveolin-1 at various levels in HEK-293 cells where the endogenous level of caveolin-1 is very low. We generated four permanent lines of this cell expressing amounts of caveolin-1 ranging from 10 to 40 times that of parental cells. The amount of caveolin-1 in the human embryonic kidney cells expressing the highest caveolin levels is comparable with that of adipocytes, cells that naturally express one of the highest levels of caveolin-1. We measured insulin receptor amount and insulin-dependent receptor autophosphorylation as well as insulin receptor substrate 1 (IRS1) tyrosine phosphorylation as an index of insulin signaling. We found that the insulin receptor level was essentially the same in the parental and all four derived cell lines. Likewise, we determined that insulin-dependent insulin receptor and IRS1 tyrosine phosphorylation was not significantly different in the four cell lines representing parental, low, medium, and high levels of caveolin-1 expression. We conclude that insulin receptor expression and ligand-dependent signaling is independent of caveolin-1 expression.</description><subject>Adipocytes - cytology</subject><subject>Adipocytes - metabolism</subject><subject>Animals</subject><subject>Caveolin 1</subject><subject>Caveolins - genetics</subject><subject>Caveolins - metabolism</subject><subject>Cell Line</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Humans</subject><subject>Insulin - metabolism</subject><subject>Insulin Receptor Substrate Proteins</subject><subject>Ligands</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Rats</subject><subject>Receptor, Insulin - genetics</subject><subject>Receptor, Insulin - metabolism</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtLAzEQh4MoWh9Xj7IH8bY1k-xuk6PUJ1QEreAtZJPZNtLd1GTr47830oJenMswzDc_ho-QY6BDoKPi_LU2w_sCuJDAKN0iA6CC57yEl20yoJRBLlkp9sh-jK80VSFhl-xBWUlJuRyQ6aWL0Rune-e7zDfZXRdXC9dlj2hw2fuQXX0uA8b4s9adzZ7crNMJmGVN8G021u_o05jDH_CQ7DR6EfFo0w_I8_XVdHybTx5u7sYXk9wUAH1eAa9YXdkSAKzkBWuYBopNySUiNFBbU0prJWsqAYIxamxdas4t1Cih0vyAnK1zl8G_rTD2qnXR4GKhO_SrqKrRiDI2EgkcrkETfIwBG7UMrtXhSwFVPx5V8qh-PaaDk03yqm7R_uIbcQk4XQNzN5t_uICqdt7MsVVMpMhCAS8ET5hYY5g0vDsMKhqHnUGbTkyvrHf_vfANUa-NBQ</recordid><startdate>20050408</startdate><enddate>20050408</enddate><creator>Wharton, Jonathan</creator><creator>Meshulamy, Tova</creator><creator>Vallega, Gino</creator><creator>Pilch, Paul</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050408</creationdate><title>Dissociation of Insulin Receptor Expression and Signaling from Caveolin-1 Expression</title><author>Wharton, Jonathan ; Meshulamy, Tova ; Vallega, Gino ; Pilch, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-61362b6d5111d9342f2a10ef539ee1f1bdc59dd92f6818220cdb5a33d1be916a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adipocytes - cytology</topic><topic>Adipocytes - metabolism</topic><topic>Animals</topic><topic>Caveolin 1</topic><topic>Caveolins - genetics</topic><topic>Caveolins - metabolism</topic><topic>Cell Line</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Humans</topic><topic>Insulin - metabolism</topic><topic>Insulin Receptor Substrate Proteins</topic><topic>Ligands</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Rats</topic><topic>Receptor, Insulin - genetics</topic><topic>Receptor, Insulin - metabolism</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wharton, Jonathan</creatorcontrib><creatorcontrib>Meshulamy, Tova</creatorcontrib><creatorcontrib>Vallega, Gino</creatorcontrib><creatorcontrib>Pilch, Paul</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wharton, Jonathan</au><au>Meshulamy, Tova</au><au>Vallega, Gino</au><au>Pilch, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociation of Insulin Receptor Expression and Signaling from Caveolin-1 Expression</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-04-08</date><risdate>2005</risdate><volume>280</volume><issue>14</issue><spage>13483</spage><epage>13486</epage><pages>13483-13486</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and function. To help clarify this issue, we created a gain of function situation by expressing caveolin-1 at various levels in HEK-293 cells where the endogenous level of caveolin-1 is very low. We generated four permanent lines of this cell expressing amounts of caveolin-1 ranging from 10 to 40 times that of parental cells. The amount of caveolin-1 in the human embryonic kidney cells expressing the highest caveolin levels is comparable with that of adipocytes, cells that naturally express one of the highest levels of caveolin-1. We measured insulin receptor amount and insulin-dependent receptor autophosphorylation as well as insulin receptor substrate 1 (IRS1) tyrosine phosphorylation as an index of insulin signaling. We found that the insulin receptor level was essentially the same in the parental and all four derived cell lines. Likewise, we determined that insulin-dependent insulin receptor and IRS1 tyrosine phosphorylation was not significantly different in the four cell lines representing parental, low, medium, and high levels of caveolin-1 expression. We conclude that insulin receptor expression and ligand-dependent signaling is independent of caveolin-1 expression.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15699039</pmid><doi>10.1074/jbc.M413891200</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2005-04, Vol.280 (14), p.13483-13486 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_67702278 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adipocytes - cytology Adipocytes - metabolism Animals Caveolin 1 Caveolins - genetics Caveolins - metabolism Cell Line Cell Membrane - chemistry Cell Membrane - metabolism Humans Insulin - metabolism Insulin Receptor Substrate Proteins Ligands Membrane Proteins - metabolism Mice Phosphoproteins - metabolism Phosphorylation Rats Receptor, Insulin - genetics Receptor, Insulin - metabolism Signal Transduction - physiology |
title | Dissociation of Insulin Receptor Expression and Signaling from Caveolin-1 Expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociation%20of%20Insulin%20Receptor%20Expression%20and%20Signaling%20from%20Caveolin-1%20Expression&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wharton,%20Jonathan&rft.date=2005-04-08&rft.volume=280&rft.issue=14&rft.spage=13483&rft.epage=13486&rft.pages=13483-13486&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M413891200&rft_dat=%3Cproquest_cross%3E67702278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67702278&rft_id=info:pmid/15699039&rft_els_id=S0021925819604187&rfr_iscdi=true |