Critical Elements of Oligosaccharide Acceptor Substrates for the Pasteurella multocida Hyaluronan Synthase

Three-dimensional structures are not available for polysaccharide synthases and only minimal information on the molecular basis for catalysis is known. The Pasteurella multocida hyaluronan synthase (PmHAS) catalyzes the polymerization of the alternating β1,3-N-acetylglucosamine-β1,4-glucuronic acid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-03, Vol.281 (9), p.5391-5397
Hauptverfasser: Williams, Kellie J., Halkes, Koen M., Kamerling, Johannis P., DeAngelis, Paul L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5397
container_issue 9
container_start_page 5391
container_title The Journal of biological chemistry
container_volume 281
creator Williams, Kellie J.
Halkes, Koen M.
Kamerling, Johannis P.
DeAngelis, Paul L.
description Three-dimensional structures are not available for polysaccharide synthases and only minimal information on the molecular basis for catalysis is known. The Pasteurella multocida hyaluronan synthase (PmHAS) catalyzes the polymerization of the alternating β1,3-N-acetylglucosamine-β1,4-glucuronic acid sugar chain by the sequential addition of single monosaccharides to the non-reducing terminus. Therefore, PmHAS possesses both GlcNAc-transferase and glucuronic acid (GlcUA)-transferase activities. The recombinant Escherichia coli-derived PmHAS enzyme will elongate exogenously supplied hyaluronan chains in vitro with either a single monosaccharide or a long chain depending on the UDP-sugar availability. Competition studies using pairs of acceptors with distinct termini (where one oligosaccharide is a substrate that may be elongated, whereas the other cannot) were performed here; the lack of competition suggests that PmHAS contains at least two distinct acceptor sites. We hypothesize that the size of the acceptor binding pockets of the enzyme corresponds to the size of the smallest high efficiency substrates; thus we tested the relative activity of a series of authentic hyaluronan oligosaccharides and related structural analogs. The GlcUA-transferase site readily elongates (GlcNAc-GlcUA)2, whereas the GlcNAc-transferase elongates GlcUA-Glc-NAc-GlcUA. The minimally sized oligosaccharides, elongated with high efficiency, both contain a trisaccharide with two glucuronic acid residues that enabled the identification of a synthetic, artificial acceptor for the synthase. PmHAS behaves as a fusion of two complete glycosyltransferases, each containing a donor site and an acceptor site, in one polypeptide. Overall, this information advances the knowledge of glycosaminoglycan biosynthesis as well as assists the creation of various therapeutic sugars for medical applications in the future.
doi_str_mv 10.1074/jbc.M510439200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67696670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819766605</els_id><sourcerecordid>67696670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-d916d4eb535289b92e3a69118af55d996e4ea7f1e0110d66636f7e755078e4273</originalsourceid><addsrcrecordid>eNqFkcGL1DAUxoMo7rh69ajBg7cZ85ombY7LsLrCygrjgreQpq_TDG0zJqky_70ZOrAn8V3Cg1--fPk-Qt4C2wCryk-Hxm6-CWAlVwVjz8gKWM3XXMDP52TFWAFrVYj6iryK8cDylApekiuQXEIh-IoctsElZ81AbwcccUqR-o4-DG7vo7G2N8G1SG-sxWPyge7mJqZgEkba5TX1SL-bmHAOOAyGjvOQvHWtoXcnM8zBT2aiu9OUehPxNXnRmSHim8t5TR4_3_7Y3q3vH7583d7cr20py7RuFci2xEZwUdSqUQVyIxVAbTohWqUklmiqDpABsFbK_JWuwkoIVtVYFhW_Jh8X3WPwv2aMSY8u2rO_Cf0ctaykkrJi_wWhylnWJWRws4A2-BgDdvoY3GjCSQPT5xp0rkE_1ZAvvLsoz82I7RN-yT0DHxagd_v-jwuoG-dtj6MuatBKC67Oz75foM54bfbBRf24KxhwBkxIwc9EvRCY8_ztMOhoHU4W2yxpk269-5fFvzW1qv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17083841</pqid></control><display><type>article</type><title>Critical Elements of Oligosaccharide Acceptor Substrates for the Pasteurella multocida Hyaluronan Synthase</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Williams, Kellie J. ; Halkes, Koen M. ; Kamerling, Johannis P. ; DeAngelis, Paul L.</creator><creatorcontrib>Williams, Kellie J. ; Halkes, Koen M. ; Kamerling, Johannis P. ; DeAngelis, Paul L.</creatorcontrib><description>Three-dimensional structures are not available for polysaccharide synthases and only minimal information on the molecular basis for catalysis is known. The Pasteurella multocida hyaluronan synthase (PmHAS) catalyzes the polymerization of the alternating β1,3-N-acetylglucosamine-β1,4-glucuronic acid sugar chain by the sequential addition of single monosaccharides to the non-reducing terminus. Therefore, PmHAS possesses both GlcNAc-transferase and glucuronic acid (GlcUA)-transferase activities. The recombinant Escherichia coli-derived PmHAS enzyme will elongate exogenously supplied hyaluronan chains in vitro with either a single monosaccharide or a long chain depending on the UDP-sugar availability. Competition studies using pairs of acceptors with distinct termini (where one oligosaccharide is a substrate that may be elongated, whereas the other cannot) were performed here; the lack of competition suggests that PmHAS contains at least two distinct acceptor sites. We hypothesize that the size of the acceptor binding pockets of the enzyme corresponds to the size of the smallest high efficiency substrates; thus we tested the relative activity of a series of authentic hyaluronan oligosaccharides and related structural analogs. The GlcUA-transferase site readily elongates (GlcNAc-GlcUA)2, whereas the GlcNAc-transferase elongates GlcUA-Glc-NAc-GlcUA. The minimally sized oligosaccharides, elongated with high efficiency, both contain a trisaccharide with two glucuronic acid residues that enabled the identification of a synthetic, artificial acceptor for the synthase. PmHAS behaves as a fusion of two complete glycosyltransferases, each containing a donor site and an acceptor site, in one polypeptide. Overall, this information advances the knowledge of glycosaminoglycan biosynthesis as well as assists the creation of various therapeutic sugars for medical applications in the future.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M510439200</identifier><identifier>PMID: 16361253</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Carbohydrate Conformation ; Carbohydrate Sequence ; Catalytic Domain ; Escherichia ; Glucuronosyltransferase - metabolism ; Glycosaminoglycans - chemistry ; Glycosaminoglycans - metabolism ; Hyaluronan Synthases ; Molecular Sequence Data ; Molecular Structure ; Oligosaccharides - chemistry ; Oligosaccharides - metabolism ; Pasteurella multocida ; Pasteurella multocida - enzymology</subject><ispartof>The Journal of biological chemistry, 2006-03, Vol.281 (9), p.5391-5397</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-d916d4eb535289b92e3a69118af55d996e4ea7f1e0110d66636f7e755078e4273</citedby><cites>FETCH-LOGICAL-c464t-d916d4eb535289b92e3a69118af55d996e4ea7f1e0110d66636f7e755078e4273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16361253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Kellie J.</creatorcontrib><creatorcontrib>Halkes, Koen M.</creatorcontrib><creatorcontrib>Kamerling, Johannis P.</creatorcontrib><creatorcontrib>DeAngelis, Paul L.</creatorcontrib><title>Critical Elements of Oligosaccharide Acceptor Substrates for the Pasteurella multocida Hyaluronan Synthase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Three-dimensional structures are not available for polysaccharide synthases and only minimal information on the molecular basis for catalysis is known. The Pasteurella multocida hyaluronan synthase (PmHAS) catalyzes the polymerization of the alternating β1,3-N-acetylglucosamine-β1,4-glucuronic acid sugar chain by the sequential addition of single monosaccharides to the non-reducing terminus. Therefore, PmHAS possesses both GlcNAc-transferase and glucuronic acid (GlcUA)-transferase activities. The recombinant Escherichia coli-derived PmHAS enzyme will elongate exogenously supplied hyaluronan chains in vitro with either a single monosaccharide or a long chain depending on the UDP-sugar availability. Competition studies using pairs of acceptors with distinct termini (where one oligosaccharide is a substrate that may be elongated, whereas the other cannot) were performed here; the lack of competition suggests that PmHAS contains at least two distinct acceptor sites. We hypothesize that the size of the acceptor binding pockets of the enzyme corresponds to the size of the smallest high efficiency substrates; thus we tested the relative activity of a series of authentic hyaluronan oligosaccharides and related structural analogs. The GlcUA-transferase site readily elongates (GlcNAc-GlcUA)2, whereas the GlcNAc-transferase elongates GlcUA-Glc-NAc-GlcUA. The minimally sized oligosaccharides, elongated with high efficiency, both contain a trisaccharide with two glucuronic acid residues that enabled the identification of a synthetic, artificial acceptor for the synthase. PmHAS behaves as a fusion of two complete glycosyltransferases, each containing a donor site and an acceptor site, in one polypeptide. Overall, this information advances the knowledge of glycosaminoglycan biosynthesis as well as assists the creation of various therapeutic sugars for medical applications in the future.</description><subject>Carbohydrate Conformation</subject><subject>Carbohydrate Sequence</subject><subject>Catalytic Domain</subject><subject>Escherichia</subject><subject>Glucuronosyltransferase - metabolism</subject><subject>Glycosaminoglycans - chemistry</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Hyaluronan Synthases</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Oligosaccharides - chemistry</subject><subject>Oligosaccharides - metabolism</subject><subject>Pasteurella multocida</subject><subject>Pasteurella multocida - enzymology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGL1DAUxoMo7rh69ajBg7cZ85ombY7LsLrCygrjgreQpq_TDG0zJqky_70ZOrAn8V3Cg1--fPk-Qt4C2wCryk-Hxm6-CWAlVwVjz8gKWM3XXMDP52TFWAFrVYj6iryK8cDylApekiuQXEIh-IoctsElZ81AbwcccUqR-o4-DG7vo7G2N8G1SG-sxWPyge7mJqZgEkba5TX1SL-bmHAOOAyGjvOQvHWtoXcnM8zBT2aiu9OUehPxNXnRmSHim8t5TR4_3_7Y3q3vH7583d7cr20py7RuFci2xEZwUdSqUQVyIxVAbTohWqUklmiqDpABsFbK_JWuwkoIVtVYFhW_Jh8X3WPwv2aMSY8u2rO_Cf0ctaykkrJi_wWhylnWJWRws4A2-BgDdvoY3GjCSQPT5xp0rkE_1ZAvvLsoz82I7RN-yT0DHxagd_v-jwuoG-dtj6MuatBKC67Oz75foM54bfbBRf24KxhwBkxIwc9EvRCY8_ztMOhoHU4W2yxpk269-5fFvzW1qv4</recordid><startdate>20060303</startdate><enddate>20060303</enddate><creator>Williams, Kellie J.</creator><creator>Halkes, Koen M.</creator><creator>Kamerling, Johannis P.</creator><creator>DeAngelis, Paul L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20060303</creationdate><title>Critical Elements of Oligosaccharide Acceptor Substrates for the Pasteurella multocida Hyaluronan Synthase</title><author>Williams, Kellie J. ; Halkes, Koen M. ; Kamerling, Johannis P. ; DeAngelis, Paul L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-d916d4eb535289b92e3a69118af55d996e4ea7f1e0110d66636f7e755078e4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Carbohydrate Conformation</topic><topic>Carbohydrate Sequence</topic><topic>Catalytic Domain</topic><topic>Escherichia</topic><topic>Glucuronosyltransferase - metabolism</topic><topic>Glycosaminoglycans - chemistry</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Hyaluronan Synthases</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Oligosaccharides - chemistry</topic><topic>Oligosaccharides - metabolism</topic><topic>Pasteurella multocida</topic><topic>Pasteurella multocida - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Kellie J.</creatorcontrib><creatorcontrib>Halkes, Koen M.</creatorcontrib><creatorcontrib>Kamerling, Johannis P.</creatorcontrib><creatorcontrib>DeAngelis, Paul L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Kellie J.</au><au>Halkes, Koen M.</au><au>Kamerling, Johannis P.</au><au>DeAngelis, Paul L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Elements of Oligosaccharide Acceptor Substrates for the Pasteurella multocida Hyaluronan Synthase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-03-03</date><risdate>2006</risdate><volume>281</volume><issue>9</issue><spage>5391</spage><epage>5397</epage><pages>5391-5397</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Three-dimensional structures are not available for polysaccharide synthases and only minimal information on the molecular basis for catalysis is known. The Pasteurella multocida hyaluronan synthase (PmHAS) catalyzes the polymerization of the alternating β1,3-N-acetylglucosamine-β1,4-glucuronic acid sugar chain by the sequential addition of single monosaccharides to the non-reducing terminus. Therefore, PmHAS possesses both GlcNAc-transferase and glucuronic acid (GlcUA)-transferase activities. The recombinant Escherichia coli-derived PmHAS enzyme will elongate exogenously supplied hyaluronan chains in vitro with either a single monosaccharide or a long chain depending on the UDP-sugar availability. Competition studies using pairs of acceptors with distinct termini (where one oligosaccharide is a substrate that may be elongated, whereas the other cannot) were performed here; the lack of competition suggests that PmHAS contains at least two distinct acceptor sites. We hypothesize that the size of the acceptor binding pockets of the enzyme corresponds to the size of the smallest high efficiency substrates; thus we tested the relative activity of a series of authentic hyaluronan oligosaccharides and related structural analogs. The GlcUA-transferase site readily elongates (GlcNAc-GlcUA)2, whereas the GlcNAc-transferase elongates GlcUA-Glc-NAc-GlcUA. The minimally sized oligosaccharides, elongated with high efficiency, both contain a trisaccharide with two glucuronic acid residues that enabled the identification of a synthetic, artificial acceptor for the synthase. PmHAS behaves as a fusion of two complete glycosyltransferases, each containing a donor site and an acceptor site, in one polypeptide. Overall, this information advances the knowledge of glycosaminoglycan biosynthesis as well as assists the creation of various therapeutic sugars for medical applications in the future.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16361253</pmid><doi>10.1074/jbc.M510439200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2006-03, Vol.281 (9), p.5391-5397
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_67696670
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Carbohydrate Conformation
Carbohydrate Sequence
Catalytic Domain
Escherichia
Glucuronosyltransferase - metabolism
Glycosaminoglycans - chemistry
Glycosaminoglycans - metabolism
Hyaluronan Synthases
Molecular Sequence Data
Molecular Structure
Oligosaccharides - chemistry
Oligosaccharides - metabolism
Pasteurella multocida
Pasteurella multocida - enzymology
title Critical Elements of Oligosaccharide Acceptor Substrates for the Pasteurella multocida Hyaluronan Synthase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Elements%20of%20Oligosaccharide%20Acceptor%20Substrates%20for%20the%20Pasteurella%20multocida%20Hyaluronan%20Synthase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Williams,%20Kellie%20J.&rft.date=2006-03-03&rft.volume=281&rft.issue=9&rft.spage=5391&rft.epage=5397&rft.pages=5391-5397&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M510439200&rft_dat=%3Cproquest_cross%3E67696670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17083841&rft_id=info:pmid/16361253&rft_els_id=S0021925819766605&rfr_iscdi=true