Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique

We have recently proposed a “processive clamp” model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, AT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-03, Vol.281 (9), p.5694-5701
Hauptverfasser: van der Does, Chris, Presenti, Chiara, Schulze, Katrin, Dinkelaker, Stephanie, Tampé, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5701
container_issue 9
container_start_page 5694
container_title The Journal of biological chemistry
container_volume 281
creator van der Does, Chris
Presenti, Chiara
Schulze, Katrin
Dinkelaker, Stephanie
Tampé, Robert
description We have recently proposed a “processive clamp” model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, ATP binding to two monomeric NBDs leads to formation of an NBD dimer that, after hydrolysis of both ATPs, dissociates and releases ADP. Here, we set out to follow the association and dissociation of NBDs using a novel minimally invasive site-specific labeling technique, which provides stable and stoichiometric attachment of fluorophores. The association and dissociation kinetics of the E599Q-NBD dimer upon addition and removal of ATP were determined by fluorescence self-quenching. Remarkably, the rate of ATP hydrolysis of the wild type NBD is determined by the rate of NBD dimerization. In the E599QNBD, however, in which the ATP hydrolysis is 250-fold reduced, the ATP hydrolysis reaction controls dimer dissociation and the overall ATPase cycle. These data explain contradicting observations on the rate-limiting step of various ABC proteins and further demonstrate that dimer formation is an important step in the ATP hydrolysis cycle.
doi_str_mv 10.1074/jbc.M511730200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67694284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819766964</els_id><sourcerecordid>67694284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-747b6a9ed807d649780e5d54e5af285e01e64e179b621f7903db1bcbae4734ad3</originalsourceid><addsrcrecordid>eNqF0U1vEzEQBuAVAtFQuHIEi0NvG2yvP3aPVaAUkRakpBI3yx-zyVSbdbreFOXIP8dRgnpC-GJZfmY88lsUbxmdMqrFx3vnpzeSMV1RTumzYsJoXZWVZD-fFxNKOSsbLuuz4lVK9zQv0bCXxRlTleSKNpPi9zfsYUSfSGzJuAZyufxBrvdhiN0-YSKzve_g793tLh_iiAFKh33AfkU-xY3F_gBuQsfIYtwFhEDcnlhyGx-hIwscoUxb8NiiJ3ProDsULsGve3zYweviRWu7BG9O-3lxd_V5Obsu59-_fJ1dzksvlBhLLbRTtoFQUx2UaHRNQQYpQNqW1xIoAyWA6cYpzlrd0Co45ryzIHQlbKjOi4tj3-0Q87NpNBtMHrrO9hB3ySitGsFr8V_INNW64TzD6RH6IaY0QGu2A27ssDeMmkM6JqdjntLJBe9OnXduA-GJn-LI4MMRrHG1_oUDGIfRr2FjeM1MY2QeMaP3R9TaaOxqwGTuFpyyijIqlVR1FvVRQP7PR4TBJI_Qewi5pR9NiPivEf8AKX2x5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17077922</pqid></control><display><type>article</type><title>Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>van der Does, Chris ; Presenti, Chiara ; Schulze, Katrin ; Dinkelaker, Stephanie ; Tampé, Robert</creator><creatorcontrib>van der Does, Chris ; Presenti, Chiara ; Schulze, Katrin ; Dinkelaker, Stephanie ; Tampé, Robert</creatorcontrib><description>We have recently proposed a “processive clamp” model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, ATP binding to two monomeric NBDs leads to formation of an NBD dimer that, after hydrolysis of both ATPs, dissociates and releases ADP. Here, we set out to follow the association and dissociation of NBDs using a novel minimally invasive site-specific labeling technique, which provides stable and stoichiometric attachment of fluorophores. The association and dissociation kinetics of the E599Q-NBD dimer upon addition and removal of ATP were determined by fluorescence self-quenching. Remarkably, the rate of ATP hydrolysis of the wild type NBD is determined by the rate of NBD dimerization. In the E599QNBD, however, in which the ATP hydrolysis is 250-fold reduced, the ATP hydrolysis reaction controls dimer dissociation and the overall ATPase cycle. These data explain contradicting observations on the rate-limiting step of various ABC proteins and further demonstrate that dimer formation is an important step in the ATP hydrolysis cycle.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M511730200</identifier><identifier>PMID: 16352609</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; ATP-Binding Cassette Transporters - metabolism ; Dimerization ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Molecular Structure ; Protein Binding ; Protein Conformation ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Staining and Labeling - methods</subject><ispartof>The Journal of biological chemistry, 2006-03, Vol.281 (9), p.5694-5701</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-747b6a9ed807d649780e5d54e5af285e01e64e179b621f7903db1bcbae4734ad3</citedby><cites>FETCH-LOGICAL-c464t-747b6a9ed807d649780e5d54e5af285e01e64e179b621f7903db1bcbae4734ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16352609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Presenti, Chiara</creatorcontrib><creatorcontrib>Schulze, Katrin</creatorcontrib><creatorcontrib>Dinkelaker, Stephanie</creatorcontrib><creatorcontrib>Tampé, Robert</creatorcontrib><title>Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We have recently proposed a “processive clamp” model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, ATP binding to two monomeric NBDs leads to formation of an NBD dimer that, after hydrolysis of both ATPs, dissociates and releases ADP. Here, we set out to follow the association and dissociation of NBDs using a novel minimally invasive site-specific labeling technique, which provides stable and stoichiometric attachment of fluorophores. The association and dissociation kinetics of the E599Q-NBD dimer upon addition and removal of ATP were determined by fluorescence self-quenching. Remarkably, the rate of ATP hydrolysis of the wild type NBD is determined by the rate of NBD dimerization. In the E599QNBD, however, in which the ATP hydrolysis is 250-fold reduced, the ATP hydrolysis reaction controls dimer dissociation and the overall ATPase cycle. These data explain contradicting observations on the rate-limiting step of various ABC proteins and further demonstrate that dimer formation is an important step in the ATP hydrolysis cycle.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Dimerization</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Molecular Structure</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Staining and Labeling - methods</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1vEzEQBuAVAtFQuHIEi0NvG2yvP3aPVaAUkRakpBI3yx-zyVSbdbreFOXIP8dRgnpC-GJZfmY88lsUbxmdMqrFx3vnpzeSMV1RTumzYsJoXZWVZD-fFxNKOSsbLuuz4lVK9zQv0bCXxRlTleSKNpPi9zfsYUSfSGzJuAZyufxBrvdhiN0-YSKzve_g793tLh_iiAFKh33AfkU-xY3F_gBuQsfIYtwFhEDcnlhyGx-hIwscoUxb8NiiJ3ProDsULsGve3zYweviRWu7BG9O-3lxd_V5Obsu59-_fJ1dzksvlBhLLbRTtoFQUx2UaHRNQQYpQNqW1xIoAyWA6cYpzlrd0Co45ryzIHQlbKjOi4tj3-0Q87NpNBtMHrrO9hB3ySitGsFr8V_INNW64TzD6RH6IaY0QGu2A27ssDeMmkM6JqdjntLJBe9OnXduA-GJn-LI4MMRrHG1_oUDGIfRr2FjeM1MY2QeMaP3R9TaaOxqwGTuFpyyijIqlVR1FvVRQP7PR4TBJI_Qewi5pR9NiPivEf8AKX2x5g</recordid><startdate>20060303</startdate><enddate>20060303</enddate><creator>van der Does, Chris</creator><creator>Presenti, Chiara</creator><creator>Schulze, Katrin</creator><creator>Dinkelaker, Stephanie</creator><creator>Tampé, Robert</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20060303</creationdate><title>Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique</title><author>van der Does, Chris ; Presenti, Chiara ; Schulze, Katrin ; Dinkelaker, Stephanie ; Tampé, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-747b6a9ed807d649780e5d54e5af285e01e64e179b621f7903db1bcbae4734ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Dimerization</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Molecular Structure</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Staining and Labeling - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Presenti, Chiara</creatorcontrib><creatorcontrib>Schulze, Katrin</creatorcontrib><creatorcontrib>Dinkelaker, Stephanie</creatorcontrib><creatorcontrib>Tampé, Robert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Does, Chris</au><au>Presenti, Chiara</au><au>Schulze, Katrin</au><au>Dinkelaker, Stephanie</au><au>Tampé, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-03-03</date><risdate>2006</risdate><volume>281</volume><issue>9</issue><spage>5694</spage><epage>5701</epage><pages>5694-5701</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We have recently proposed a “processive clamp” model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, ATP binding to two monomeric NBDs leads to formation of an NBD dimer that, after hydrolysis of both ATPs, dissociates and releases ADP. Here, we set out to follow the association and dissociation of NBDs using a novel minimally invasive site-specific labeling technique, which provides stable and stoichiometric attachment of fluorophores. The association and dissociation kinetics of the E599Q-NBD dimer upon addition and removal of ATP were determined by fluorescence self-quenching. Remarkably, the rate of ATP hydrolysis of the wild type NBD is determined by the rate of NBD dimerization. In the E599QNBD, however, in which the ATP hydrolysis is 250-fold reduced, the ATP hydrolysis reaction controls dimer dissociation and the overall ATPase cycle. These data explain contradicting observations on the rate-limiting step of various ABC proteins and further demonstrate that dimer formation is an important step in the ATP hydrolysis cycle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16352609</pmid><doi>10.1074/jbc.M511730200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2006-03, Vol.281 (9), p.5694-5701
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_67694284
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphate - metabolism
ATP-Binding Cassette Transporters - metabolism
Dimerization
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
Molecular Structure
Protein Binding
Protein Conformation
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Staining and Labeling - methods
title Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20the%20ATP%20Hydrolysis%20Cycle%20of%20the%20Nucleotide-binding%20Domain%20of%20Mdl1%20Studied%20by%20a%20Novel%20Site-specific%20Labeling%20Technique&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=van%20der%20Does,%20Chris&rft.date=2006-03-03&rft.volume=281&rft.issue=9&rft.spage=5694&rft.epage=5701&rft.pages=5694-5701&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M511730200&rft_dat=%3Cproquest_cross%3E67694284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17077922&rft_id=info:pmid/16352609&rft_els_id=S0021925819766964&rfr_iscdi=true