Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation

Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fractu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2009-11, Vol.27 (11), p.1467-1472
Hauptverfasser: Ong, Kevin L., Rundell, Steve, Liepins, Imants, Laurent, Ryan, Markel, David, Kurtz, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1472
container_issue 11
container_start_page 1467
container_title Journal of orthopaedic research
container_volume 27
creator Ong, Kevin L.
Rundell, Steve
Liepins, Imants
Laurent, Ryan
Markel, David
Kurtz, Steven M.
description Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009
doi_str_mv 10.1002/jor.20918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67693727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67693727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</originalsourceid><addsrcrecordid>eNp1kM1u1DAURi0EokNhwQsgr5CQmtY_iZ0saUUHUEUBgdqddeO5oW6dONiOprPui5NhBlixupvzHV0dQl5ydswZEye3IR4L1vD6EVnwqiqLSujrx2TBtFQFE0odkGcp3TLGNBf1U3LAm7JuWKkX5OHUhR7tDQzOgqd9WKF3ww8aOgoWM7STh0ht6Mcw4JDpGPwG883G44A05YgpYTqiXQSbp4g0unR3RGFY0TXOwwgZaRe8D-utddzyRecydf3oYciQXRiekycd-IQv9veQfD9_9-3sfXFxufxw9vaisKUSdVELVWItleKrVohGtUI13ErbSmASRM25VhUHDlXXtRUyBMU1L3mrK1ZLRHlIXu-8Yww_J0zZ9C5Z9PMjGKZklFaN1ELP4JsdaGNIKWJnxuh6iBvDmdkWN3Nx87v4zL7aS6e2x9U_cp94Bk52wNp53PzfZD5efv2jLHYLlzLe_11AvJtflLoyV5-W5rr-cn61PJXms_wFaTGceA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67693727</pqid></control><display><type>article</type><title>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ong, Kevin L. ; Rundell, Steve ; Liepins, Imants ; Laurent, Ryan ; Markel, David ; Kurtz, Steven M.</creator><creatorcontrib>Ong, Kevin L. ; Rundell, Steve ; Liepins, Imants ; Laurent, Ryan ; Markel, David ; Kurtz, Steven M.</creatorcontrib><description>Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.20918</identifier><identifier>PMID: 19489047</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetabulum ; Arthroplasty, Replacement, Hip - instrumentation ; Arthroplasty, Replacement, Hip - methods ; deformation ; Equipment Failure Analysis ; finite element ; Finite Element Analysis ; Hip Prosthesis ; Humans ; polyethylene ; Polyethylenes ; Prosthesis Design ; Prosthesis Failure ; Stress, Mechanical ; THA ; wear</subject><ispartof>Journal of orthopaedic research, 2009-11, Vol.27 (11), p.1467-1472</ispartof><rights>Copyright © 2009 Orthopaedic Research Society</rights><rights>(c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</citedby><cites>FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.20918$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.20918$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19489047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, Kevin L.</creatorcontrib><creatorcontrib>Rundell, Steve</creatorcontrib><creatorcontrib>Liepins, Imants</creatorcontrib><creatorcontrib>Laurent, Ryan</creatorcontrib><creatorcontrib>Markel, David</creatorcontrib><creatorcontrib>Kurtz, Steven M.</creatorcontrib><title>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</title><title>Journal of orthopaedic research</title><addtitle>J. Orthop. Res</addtitle><description>Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009</description><subject>Acetabulum</subject><subject>Arthroplasty, Replacement, Hip - instrumentation</subject><subject>Arthroplasty, Replacement, Hip - methods</subject><subject>deformation</subject><subject>Equipment Failure Analysis</subject><subject>finite element</subject><subject>Finite Element Analysis</subject><subject>Hip Prosthesis</subject><subject>Humans</subject><subject>polyethylene</subject><subject>Polyethylenes</subject><subject>Prosthesis Design</subject><subject>Prosthesis Failure</subject><subject>Stress, Mechanical</subject><subject>THA</subject><subject>wear</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1u1DAURi0EokNhwQsgr5CQmtY_iZ0saUUHUEUBgdqddeO5oW6dONiOprPui5NhBlixupvzHV0dQl5ydswZEye3IR4L1vD6EVnwqiqLSujrx2TBtFQFE0odkGcp3TLGNBf1U3LAm7JuWKkX5OHUhR7tDQzOgqd9WKF3ww8aOgoWM7STh0ht6Mcw4JDpGPwG883G44A05YgpYTqiXQSbp4g0unR3RGFY0TXOwwgZaRe8D-utddzyRecydf3oYciQXRiekycd-IQv9veQfD9_9-3sfXFxufxw9vaisKUSdVELVWItleKrVohGtUI13ErbSmASRM25VhUHDlXXtRUyBMU1L3mrK1ZLRHlIXu-8Yww_J0zZ9C5Z9PMjGKZklFaN1ELP4JsdaGNIKWJnxuh6iBvDmdkWN3Nx87v4zL7aS6e2x9U_cp94Bk52wNp53PzfZD5efv2jLHYLlzLe_11AvJtflLoyV5-W5rr-cn61PJXms_wFaTGceA</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Ong, Kevin L.</creator><creator>Rundell, Steve</creator><creator>Liepins, Imants</creator><creator>Laurent, Ryan</creator><creator>Markel, David</creator><creator>Kurtz, Steven M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200911</creationdate><title>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</title><author>Ong, Kevin L. ; Rundell, Steve ; Liepins, Imants ; Laurent, Ryan ; Markel, David ; Kurtz, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acetabulum</topic><topic>Arthroplasty, Replacement, Hip - instrumentation</topic><topic>Arthroplasty, Replacement, Hip - methods</topic><topic>deformation</topic><topic>Equipment Failure Analysis</topic><topic>finite element</topic><topic>Finite Element Analysis</topic><topic>Hip Prosthesis</topic><topic>Humans</topic><topic>polyethylene</topic><topic>Polyethylenes</topic><topic>Prosthesis Design</topic><topic>Prosthesis Failure</topic><topic>Stress, Mechanical</topic><topic>THA</topic><topic>wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Kevin L.</creatorcontrib><creatorcontrib>Rundell, Steve</creatorcontrib><creatorcontrib>Liepins, Imants</creatorcontrib><creatorcontrib>Laurent, Ryan</creatorcontrib><creatorcontrib>Markel, David</creatorcontrib><creatorcontrib>Kurtz, Steven M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Kevin L.</au><au>Rundell, Steve</au><au>Liepins, Imants</au><au>Laurent, Ryan</au><au>Markel, David</au><au>Kurtz, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J. Orthop. Res</addtitle><date>2009-11</date><risdate>2009</risdate><volume>27</volume><issue>11</issue><spage>1467</spage><epage>1472</epage><pages>1467-1472</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19489047</pmid><doi>10.1002/jor.20918</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0736-0266
ispartof Journal of orthopaedic research, 2009-11, Vol.27 (11), p.1467-1472
issn 0736-0266
1554-527X
language eng
recordid cdi_proquest_miscellaneous_67693727
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetabulum
Arthroplasty, Replacement, Hip - instrumentation
Arthroplasty, Replacement, Hip - methods
deformation
Equipment Failure Analysis
finite element
Finite Element Analysis
Hip Prosthesis
Humans
polyethylene
Polyethylenes
Prosthesis Design
Prosthesis Failure
Stress, Mechanical
THA
wear
title Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20modeling%20of%20acetabular%20component%20polyethylene%20stresses,%20fracture%20risk,%20and%20wear%20rate%20following%20press-fit%20implantation&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Ong,%20Kevin%20L.&rft.date=2009-11&rft.volume=27&rft.issue=11&rft.spage=1467&rft.epage=1472&rft.pages=1467-1472&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.20918&rft_dat=%3Cproquest_cross%3E67693727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67693727&rft_id=info:pmid/19489047&rfr_iscdi=true