Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation
Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fractu...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2009-11, Vol.27 (11), p.1467-1472 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1472 |
---|---|
container_issue | 11 |
container_start_page | 1467 |
container_title | Journal of orthopaedic research |
container_volume | 27 |
creator | Ong, Kevin L. Rundell, Steve Liepins, Imants Laurent, Ryan Markel, David Kurtz, Steven M. |
description | Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009 |
doi_str_mv | 10.1002/jor.20918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67693727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67693727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</originalsourceid><addsrcrecordid>eNp1kM1u1DAURi0EokNhwQsgr5CQmtY_iZ0saUUHUEUBgdqddeO5oW6dONiOprPui5NhBlixupvzHV0dQl5ydswZEye3IR4L1vD6EVnwqiqLSujrx2TBtFQFE0odkGcp3TLGNBf1U3LAm7JuWKkX5OHUhR7tDQzOgqd9WKF3ww8aOgoWM7STh0ht6Mcw4JDpGPwG883G44A05YgpYTqiXQSbp4g0unR3RGFY0TXOwwgZaRe8D-utddzyRecydf3oYciQXRiekycd-IQv9veQfD9_9-3sfXFxufxw9vaisKUSdVELVWItleKrVohGtUI13ErbSmASRM25VhUHDlXXtRUyBMU1L3mrK1ZLRHlIXu-8Yww_J0zZ9C5Z9PMjGKZklFaN1ELP4JsdaGNIKWJnxuh6iBvDmdkWN3Nx87v4zL7aS6e2x9U_cp94Bk52wNp53PzfZD5efv2jLHYLlzLe_11AvJtflLoyV5-W5rr-cn61PJXms_wFaTGceA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67693727</pqid></control><display><type>article</type><title>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ong, Kevin L. ; Rundell, Steve ; Liepins, Imants ; Laurent, Ryan ; Markel, David ; Kurtz, Steven M.</creator><creatorcontrib>Ong, Kevin L. ; Rundell, Steve ; Liepins, Imants ; Laurent, Ryan ; Markel, David ; Kurtz, Steven M.</creatorcontrib><description>Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.20918</identifier><identifier>PMID: 19489047</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetabulum ; Arthroplasty, Replacement, Hip - instrumentation ; Arthroplasty, Replacement, Hip - methods ; deformation ; Equipment Failure Analysis ; finite element ; Finite Element Analysis ; Hip Prosthesis ; Humans ; polyethylene ; Polyethylenes ; Prosthesis Design ; Prosthesis Failure ; Stress, Mechanical ; THA ; wear</subject><ispartof>Journal of orthopaedic research, 2009-11, Vol.27 (11), p.1467-1472</ispartof><rights>Copyright © 2009 Orthopaedic Research Society</rights><rights>(c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</citedby><cites>FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.20918$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.20918$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19489047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, Kevin L.</creatorcontrib><creatorcontrib>Rundell, Steve</creatorcontrib><creatorcontrib>Liepins, Imants</creatorcontrib><creatorcontrib>Laurent, Ryan</creatorcontrib><creatorcontrib>Markel, David</creatorcontrib><creatorcontrib>Kurtz, Steven M.</creatorcontrib><title>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</title><title>Journal of orthopaedic research</title><addtitle>J. Orthop. Res</addtitle><description>Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009</description><subject>Acetabulum</subject><subject>Arthroplasty, Replacement, Hip - instrumentation</subject><subject>Arthroplasty, Replacement, Hip - methods</subject><subject>deformation</subject><subject>Equipment Failure Analysis</subject><subject>finite element</subject><subject>Finite Element Analysis</subject><subject>Hip Prosthesis</subject><subject>Humans</subject><subject>polyethylene</subject><subject>Polyethylenes</subject><subject>Prosthesis Design</subject><subject>Prosthesis Failure</subject><subject>Stress, Mechanical</subject><subject>THA</subject><subject>wear</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1u1DAURi0EokNhwQsgr5CQmtY_iZ0saUUHUEUBgdqddeO5oW6dONiOprPui5NhBlixupvzHV0dQl5ydswZEye3IR4L1vD6EVnwqiqLSujrx2TBtFQFE0odkGcp3TLGNBf1U3LAm7JuWKkX5OHUhR7tDQzOgqd9WKF3ww8aOgoWM7STh0ht6Mcw4JDpGPwG883G44A05YgpYTqiXQSbp4g0unR3RGFY0TXOwwgZaRe8D-utddzyRecydf3oYciQXRiekycd-IQv9veQfD9_9-3sfXFxufxw9vaisKUSdVELVWItleKrVohGtUI13ErbSmASRM25VhUHDlXXtRUyBMU1L3mrK1ZLRHlIXu-8Yww_J0zZ9C5Z9PMjGKZklFaN1ELP4JsdaGNIKWJnxuh6iBvDmdkWN3Nx87v4zL7aS6e2x9U_cp94Bk52wNp53PzfZD5efv2jLHYLlzLe_11AvJtflLoyV5-W5rr-cn61PJXms_wFaTGceA</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Ong, Kevin L.</creator><creator>Rundell, Steve</creator><creator>Liepins, Imants</creator><creator>Laurent, Ryan</creator><creator>Markel, David</creator><creator>Kurtz, Steven M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200911</creationdate><title>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</title><author>Ong, Kevin L. ; Rundell, Steve ; Liepins, Imants ; Laurent, Ryan ; Markel, David ; Kurtz, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4628-8264e83661db2296b2691c3cb3a03a28117651a1a5ffb5e0ea617141b75083ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acetabulum</topic><topic>Arthroplasty, Replacement, Hip - instrumentation</topic><topic>Arthroplasty, Replacement, Hip - methods</topic><topic>deformation</topic><topic>Equipment Failure Analysis</topic><topic>finite element</topic><topic>Finite Element Analysis</topic><topic>Hip Prosthesis</topic><topic>Humans</topic><topic>polyethylene</topic><topic>Polyethylenes</topic><topic>Prosthesis Design</topic><topic>Prosthesis Failure</topic><topic>Stress, Mechanical</topic><topic>THA</topic><topic>wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Kevin L.</creatorcontrib><creatorcontrib>Rundell, Steve</creatorcontrib><creatorcontrib>Liepins, Imants</creatorcontrib><creatorcontrib>Laurent, Ryan</creatorcontrib><creatorcontrib>Markel, David</creatorcontrib><creatorcontrib>Kurtz, Steven M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Kevin L.</au><au>Rundell, Steve</au><au>Liepins, Imants</au><au>Laurent, Ryan</au><au>Markel, David</au><au>Kurtz, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J. Orthop. Res</addtitle><date>2009-11</date><risdate>2009</risdate><volume>27</volume><issue>11</issue><spage>1467</spage><epage>1472</epage><pages>1467-1472</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>Press‐fit implantation may result in acetabular component deformation between the ischial‐ilial columns (“pinching”). The biomechanical and clinical consequences of liner pinching due to press‐fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line‐to‐line (“no pinch”) reaming and 2 mm underreaming press fit (“pinch”) conditions were examined for Trident cups with X3™ polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press‐fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress–strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm‐thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1467–1472, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19489047</pmid><doi>10.1002/jor.20918</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0266 |
ispartof | Journal of orthopaedic research, 2009-11, Vol.27 (11), p.1467-1472 |
issn | 0736-0266 1554-527X |
language | eng |
recordid | cdi_proquest_miscellaneous_67693727 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acetabulum Arthroplasty, Replacement, Hip - instrumentation Arthroplasty, Replacement, Hip - methods deformation Equipment Failure Analysis finite element Finite Element Analysis Hip Prosthesis Humans polyethylene Polyethylenes Prosthesis Design Prosthesis Failure Stress, Mechanical THA wear |
title | Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20modeling%20of%20acetabular%20component%20polyethylene%20stresses,%20fracture%20risk,%20and%20wear%20rate%20following%20press-fit%20implantation&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Ong,%20Kevin%20L.&rft.date=2009-11&rft.volume=27&rft.issue=11&rft.spage=1467&rft.epage=1472&rft.pages=1467-1472&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.20918&rft_dat=%3Cproquest_cross%3E67693727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67693727&rft_id=info:pmid/19489047&rfr_iscdi=true |