Why are plastid genomes retained in non-photosynthetic organisms?

The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in plant science 2006-02, Vol.11 (2), p.101-108
Hauptverfasser: Barbrook, Adrian C., Howe, Christopher J., Purton, Saul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 2
container_start_page 101
container_title Trends in plant science
container_volume 11
creator Barbrook, Adrian C.
Howe, Christopher J.
Purton, Saul
description The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis.
doi_str_mv 10.1016/j.tplants.2005.12.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67682100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136013850500302X</els_id><sourcerecordid>67682100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</originalsourceid><addsrcrecordid>eNqF0E1v1DAQgGELgWgp_AQgF7glzCTxR05VVfElVeIAFUfLcSa7Xm3sxfZW2n-Pq43UY0_24Zmx9TL2HqFBQPFl1-TD3vicmhaAN9g2AP0LdolKqrrvZPuy3DsBNXaKX7A3Ke0AQKISr9kFih5EB3jJbv5uT5WJVJVlKbup2pAPC6UqUjbO01Q5X_ng68M25JBOPm8pO1uFuDHepSVdv2WvZrNP9G49r9j9t69_bn_Ud7--_7y9uatt36tcG0uD5EYAEHIgY1olRsu5VAahVzBKRVIMA9I4ohyMlXYytsO5bxUMUnZX7PN57yGGf0dKWS8uWdqXCBSOSQspVIsAz0KU2KGEtkB-hjaGlCLN-hDdYuJJI-jHyHqn18j6MbLGVpfIZe7D-sBxXGh6mlqrFvBpBSZZs5-j8dalJyd5hxy74j6e3WyCNptYzP3vtiwALIuU4kVcnwWVsg-Ook7Wkbc0uUg26ym4Zz77HyjPpek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17131702</pqid></control><display><type>article</type><title>Why are plastid genomes retained in non-photosynthetic organisms?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Barbrook, Adrian C. ; Howe, Christopher J. ; Purton, Saul</creator><creatorcontrib>Barbrook, Adrian C. ; Howe, Christopher J. ; Purton, Saul</creatorcontrib><description>The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2005.12.004</identifier><identifier>PMID: 16406301</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Apicomplexa ; Apicomplexa - genetics ; Apicomplexa - metabolism ; Biological and medical sciences ; evolution ; Fundamental and applied biological sciences. Psychology ; Genes, Plant ; Genes, rRNA ; Genes. Genome ; Genome ; Heme - biosynthesis ; literature reviews ; Mitochondria - metabolism ; Molecular and cellular biology ; Molecular genetics ; photosynthesis ; Photosynthesis - genetics ; plant genetics ; plastid DNA ; Plastids - genetics ; Protein Biosynthesis ; RNA, Transfer - physiology ; RNA, Transfer, Glu - physiology ; RNA, Transfer, Met - physiology ; transfer RNA</subject><ispartof>Trends in plant science, 2006-02, Vol.11 (2), p.101-108</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</citedby><cites>FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S136013850500302X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17531513$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16406301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbrook, Adrian C.</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Purton, Saul</creatorcontrib><title>Why are plastid genomes retained in non-photosynthetic organisms?</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis.</description><subject>Animals</subject><subject>Apicomplexa</subject><subject>Apicomplexa - genetics</subject><subject>Apicomplexa - metabolism</subject><subject>Biological and medical sciences</subject><subject>evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Plant</subject><subject>Genes, rRNA</subject><subject>Genes. Genome</subject><subject>Genome</subject><subject>Heme - biosynthesis</subject><subject>literature reviews</subject><subject>Mitochondria - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>plant genetics</subject><subject>plastid DNA</subject><subject>Plastids - genetics</subject><subject>Protein Biosynthesis</subject><subject>RNA, Transfer - physiology</subject><subject>RNA, Transfer, Glu - physiology</subject><subject>RNA, Transfer, Met - physiology</subject><subject>transfer RNA</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQgGELgWgp_AQgF7glzCTxR05VVfElVeIAFUfLcSa7Xm3sxfZW2n-Pq43UY0_24Zmx9TL2HqFBQPFl1-TD3vicmhaAN9g2AP0LdolKqrrvZPuy3DsBNXaKX7A3Ke0AQKISr9kFih5EB3jJbv5uT5WJVJVlKbup2pAPC6UqUjbO01Q5X_ng68M25JBOPm8pO1uFuDHepSVdv2WvZrNP9G49r9j9t69_bn_Ud7--_7y9uatt36tcG0uD5EYAEHIgY1olRsu5VAahVzBKRVIMA9I4ohyMlXYytsO5bxUMUnZX7PN57yGGf0dKWS8uWdqXCBSOSQspVIsAz0KU2KGEtkB-hjaGlCLN-hDdYuJJI-jHyHqn18j6MbLGVpfIZe7D-sBxXGh6mlqrFvBpBSZZs5-j8dalJyd5hxy74j6e3WyCNptYzP3vtiwALIuU4kVcnwWVsg-Ook7Wkbc0uUg26ym4Zz77HyjPpek</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Barbrook, Adrian C.</creator><creator>Howe, Christopher J.</creator><creator>Purton, Saul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>Why are plastid genomes retained in non-photosynthetic organisms?</title><author>Barbrook, Adrian C. ; Howe, Christopher J. ; Purton, Saul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Apicomplexa</topic><topic>Apicomplexa - genetics</topic><topic>Apicomplexa - metabolism</topic><topic>Biological and medical sciences</topic><topic>evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Plant</topic><topic>Genes, rRNA</topic><topic>Genes. Genome</topic><topic>Genome</topic><topic>Heme - biosynthesis</topic><topic>literature reviews</topic><topic>Mitochondria - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>plant genetics</topic><topic>plastid DNA</topic><topic>Plastids - genetics</topic><topic>Protein Biosynthesis</topic><topic>RNA, Transfer - physiology</topic><topic>RNA, Transfer, Glu - physiology</topic><topic>RNA, Transfer, Met - physiology</topic><topic>transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbrook, Adrian C.</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Purton, Saul</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbrook, Adrian C.</au><au>Howe, Christopher J.</au><au>Purton, Saul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why are plastid genomes retained in non-photosynthetic organisms?</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>11</volume><issue>2</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16406301</pmid><doi>10.1016/j.tplants.2005.12.004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1360-1385
ispartof Trends in plant science, 2006-02, Vol.11 (2), p.101-108
issn 1360-1385
1878-4372
language eng
recordid cdi_proquest_miscellaneous_67682100
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Apicomplexa
Apicomplexa - genetics
Apicomplexa - metabolism
Biological and medical sciences
evolution
Fundamental and applied biological sciences. Psychology
Genes, Plant
Genes, rRNA
Genes. Genome
Genome
Heme - biosynthesis
literature reviews
Mitochondria - metabolism
Molecular and cellular biology
Molecular genetics
photosynthesis
Photosynthesis - genetics
plant genetics
plastid DNA
Plastids - genetics
Protein Biosynthesis
RNA, Transfer - physiology
RNA, Transfer, Glu - physiology
RNA, Transfer, Met - physiology
transfer RNA
title Why are plastid genomes retained in non-photosynthetic organisms?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20are%20plastid%20genomes%20retained%20in%20non-photosynthetic%20organisms?&rft.jtitle=Trends%20in%20plant%20science&rft.au=Barbrook,%20Adrian%20C.&rft.date=2006-02-01&rft.volume=11&rft.issue=2&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2005.12.004&rft_dat=%3Cproquest_cross%3E67682100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17131702&rft_id=info:pmid/16406301&rft_els_id=S136013850500302X&rfr_iscdi=true