Why are plastid genomes retained in non-photosynthetic organisms?
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2006-02, Vol.11 (2), p.101-108 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 2 |
container_start_page | 101 |
container_title | Trends in plant science |
container_volume | 11 |
creator | Barbrook, Adrian C. Howe, Christopher J. Purton, Saul |
description | The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis. |
doi_str_mv | 10.1016/j.tplants.2005.12.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67682100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136013850500302X</els_id><sourcerecordid>67682100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</originalsourceid><addsrcrecordid>eNqF0E1v1DAQgGELgWgp_AQgF7glzCTxR05VVfElVeIAFUfLcSa7Xm3sxfZW2n-Pq43UY0_24Zmx9TL2HqFBQPFl1-TD3vicmhaAN9g2AP0LdolKqrrvZPuy3DsBNXaKX7A3Ke0AQKISr9kFih5EB3jJbv5uT5WJVJVlKbup2pAPC6UqUjbO01Q5X_ng68M25JBOPm8pO1uFuDHepSVdv2WvZrNP9G49r9j9t69_bn_Ud7--_7y9uatt36tcG0uD5EYAEHIgY1olRsu5VAahVzBKRVIMA9I4ohyMlXYytsO5bxUMUnZX7PN57yGGf0dKWS8uWdqXCBSOSQspVIsAz0KU2KGEtkB-hjaGlCLN-hDdYuJJI-jHyHqn18j6MbLGVpfIZe7D-sBxXGh6mlqrFvBpBSZZs5-j8dalJyd5hxy74j6e3WyCNptYzP3vtiwALIuU4kVcnwWVsg-Ook7Wkbc0uUg26ym4Zz77HyjPpek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17131702</pqid></control><display><type>article</type><title>Why are plastid genomes retained in non-photosynthetic organisms?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Barbrook, Adrian C. ; Howe, Christopher J. ; Purton, Saul</creator><creatorcontrib>Barbrook, Adrian C. ; Howe, Christopher J. ; Purton, Saul</creatorcontrib><description>The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2005.12.004</identifier><identifier>PMID: 16406301</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Apicomplexa ; Apicomplexa - genetics ; Apicomplexa - metabolism ; Biological and medical sciences ; evolution ; Fundamental and applied biological sciences. Psychology ; Genes, Plant ; Genes, rRNA ; Genes. Genome ; Genome ; Heme - biosynthesis ; literature reviews ; Mitochondria - metabolism ; Molecular and cellular biology ; Molecular genetics ; photosynthesis ; Photosynthesis - genetics ; plant genetics ; plastid DNA ; Plastids - genetics ; Protein Biosynthesis ; RNA, Transfer - physiology ; RNA, Transfer, Glu - physiology ; RNA, Transfer, Met - physiology ; transfer RNA</subject><ispartof>Trends in plant science, 2006-02, Vol.11 (2), p.101-108</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</citedby><cites>FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S136013850500302X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17531513$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16406301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbrook, Adrian C.</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Purton, Saul</creatorcontrib><title>Why are plastid genomes retained in non-photosynthetic organisms?</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis.</description><subject>Animals</subject><subject>Apicomplexa</subject><subject>Apicomplexa - genetics</subject><subject>Apicomplexa - metabolism</subject><subject>Biological and medical sciences</subject><subject>evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Plant</subject><subject>Genes, rRNA</subject><subject>Genes. Genome</subject><subject>Genome</subject><subject>Heme - biosynthesis</subject><subject>literature reviews</subject><subject>Mitochondria - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>plant genetics</subject><subject>plastid DNA</subject><subject>Plastids - genetics</subject><subject>Protein Biosynthesis</subject><subject>RNA, Transfer - physiology</subject><subject>RNA, Transfer, Glu - physiology</subject><subject>RNA, Transfer, Met - physiology</subject><subject>transfer RNA</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQgGELgWgp_AQgF7glzCTxR05VVfElVeIAFUfLcSa7Xm3sxfZW2n-Pq43UY0_24Zmx9TL2HqFBQPFl1-TD3vicmhaAN9g2AP0LdolKqrrvZPuy3DsBNXaKX7A3Ke0AQKISr9kFih5EB3jJbv5uT5WJVJVlKbup2pAPC6UqUjbO01Q5X_ng68M25JBOPm8pO1uFuDHepSVdv2WvZrNP9G49r9j9t69_bn_Ud7--_7y9uatt36tcG0uD5EYAEHIgY1olRsu5VAahVzBKRVIMA9I4ohyMlXYytsO5bxUMUnZX7PN57yGGf0dKWS8uWdqXCBSOSQspVIsAz0KU2KGEtkB-hjaGlCLN-hDdYuJJI-jHyHqn18j6MbLGVpfIZe7D-sBxXGh6mlqrFvBpBSZZs5-j8dalJyd5hxy74j6e3WyCNptYzP3vtiwALIuU4kVcnwWVsg-Ook7Wkbc0uUg26ym4Zz77HyjPpek</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Barbrook, Adrian C.</creator><creator>Howe, Christopher J.</creator><creator>Purton, Saul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>Why are plastid genomes retained in non-photosynthetic organisms?</title><author>Barbrook, Adrian C. ; Howe, Christopher J. ; Purton, Saul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ace975a600e150eaa286bc5578a10480b78e76991ebb179ac7cdac31f42809773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Apicomplexa</topic><topic>Apicomplexa - genetics</topic><topic>Apicomplexa - metabolism</topic><topic>Biological and medical sciences</topic><topic>evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Plant</topic><topic>Genes, rRNA</topic><topic>Genes. Genome</topic><topic>Genome</topic><topic>Heme - biosynthesis</topic><topic>literature reviews</topic><topic>Mitochondria - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>plant genetics</topic><topic>plastid DNA</topic><topic>Plastids - genetics</topic><topic>Protein Biosynthesis</topic><topic>RNA, Transfer - physiology</topic><topic>RNA, Transfer, Glu - physiology</topic><topic>RNA, Transfer, Met - physiology</topic><topic>transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbrook, Adrian C.</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Purton, Saul</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbrook, Adrian C.</au><au>Howe, Christopher J.</au><au>Purton, Saul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why are plastid genomes retained in non-photosynthetic organisms?</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>11</volume><issue>2</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the ‘essential tRNAs’ hypothesis and the ‘transfer-window’ hypothesis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16406301</pmid><doi>10.1016/j.tplants.2005.12.004</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-1385 |
ispartof | Trends in plant science, 2006-02, Vol.11 (2), p.101-108 |
issn | 1360-1385 1878-4372 |
language | eng |
recordid | cdi_proquest_miscellaneous_67682100 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Apicomplexa Apicomplexa - genetics Apicomplexa - metabolism Biological and medical sciences evolution Fundamental and applied biological sciences. Psychology Genes, Plant Genes, rRNA Genes. Genome Genome Heme - biosynthesis literature reviews Mitochondria - metabolism Molecular and cellular biology Molecular genetics photosynthesis Photosynthesis - genetics plant genetics plastid DNA Plastids - genetics Protein Biosynthesis RNA, Transfer - physiology RNA, Transfer, Glu - physiology RNA, Transfer, Met - physiology transfer RNA |
title | Why are plastid genomes retained in non-photosynthetic organisms? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20are%20plastid%20genomes%20retained%20in%20non-photosynthetic%20organisms?&rft.jtitle=Trends%20in%20plant%20science&rft.au=Barbrook,%20Adrian%20C.&rft.date=2006-02-01&rft.volume=11&rft.issue=2&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2005.12.004&rft_dat=%3Cproquest_cross%3E67682100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17131702&rft_id=info:pmid/16406301&rft_els_id=S136013850500302X&rfr_iscdi=true |