A multiplexed optofluidic biomolecular sensor for low mass detection

Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2009-01, Vol.9 (20), p.2924-2932
Hauptverfasser: Mandal, Sudeep, Goddard, Julie M, Erickson, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2932
container_issue 20
container_start_page 2924
container_title Lab on a chip
container_volume 9
creator Mandal, Sudeep
Goddard, Julie M
Erickson, David
description Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay.
doi_str_mv 10.1039/b907826f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67674407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21180591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMo7roK_gXSk3ip5quZznFZP2HBi55LmiZQSTc1aVH_eyu76nEPwwzDj_fgPULOGb1mVOBNjRRKrtwBmTMJIqesxMO_G2FGTlJ6o5QVUpXHZDa9SgRZzMntMutGP7S9t5-2yUI_BOfHtmlNVrehC96a0euYJbtJIWZuGh8-sk6nlDV2sGZow-aUHDntkz3b7QV5vb97WT3m6-eHp9VynRsBMOQMGlo7mIybBpBxEIpRzoUtVSEKIajgSmrtOKJR3IDTuhbGoZCAUmEpFuRyq9vH8D7aNFRdm4z1Xm9sGFOlQIGUFPaCQiJKLnEvyBkraYFsAq-2oIkhpWhd1ce20_GrYrT66aD67WBCL3aaY93Z5h_chS6-AeJRf9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21180591</pqid></control><display><type>article</type><title>A multiplexed optofluidic biomolecular sensor for low mass detection</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mandal, Sudeep ; Goddard, Julie M ; Erickson, David</creator><creatorcontrib>Mandal, Sudeep ; Goddard, Julie M ; Erickson, David</creatorcontrib><description>Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b907826f</identifier><identifier>PMID: 19789745</identifier><language>eng</language><publisher>England</publisher><subject>Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Equipment Design ; Immunoassay - instrumentation ; Immunoassay - methods ; Interleukin-4 - analysis ; Interleukin-4 - immunology ; Interleukin-6 - analysis ; Interleukin-6 - immunology ; Interleukin-8 - analysis ; Interleukin-8 - immunology ; Interleukins - analysis ; Interleukins - immunology ; Microfluidic Analytical Techniques - instrumentation ; Optical Devices ; Photons ; Sensitivity and Specificity</subject><ispartof>Lab on a chip, 2009-01, Vol.9 (20), p.2924-2932</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</citedby><cites>FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19789745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Sudeep</creatorcontrib><creatorcontrib>Goddard, Julie M</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><title>A multiplexed optofluidic biomolecular sensor for low mass detection</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay.</description><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Equipment Design</subject><subject>Immunoassay - instrumentation</subject><subject>Immunoassay - methods</subject><subject>Interleukin-4 - analysis</subject><subject>Interleukin-4 - immunology</subject><subject>Interleukin-6 - analysis</subject><subject>Interleukin-6 - immunology</subject><subject>Interleukin-8 - analysis</subject><subject>Interleukin-8 - immunology</subject><subject>Interleukins - analysis</subject><subject>Interleukins - immunology</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Optical Devices</subject><subject>Photons</subject><subject>Sensitivity and Specificity</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1LxDAQxYMo7roK_gXSk3ip5quZznFZP2HBi55LmiZQSTc1aVH_eyu76nEPwwzDj_fgPULOGb1mVOBNjRRKrtwBmTMJIqesxMO_G2FGTlJ6o5QVUpXHZDa9SgRZzMntMutGP7S9t5-2yUI_BOfHtmlNVrehC96a0euYJbtJIWZuGh8-sk6nlDV2sGZow-aUHDntkz3b7QV5vb97WT3m6-eHp9VynRsBMOQMGlo7mIybBpBxEIpRzoUtVSEKIajgSmrtOKJR3IDTuhbGoZCAUmEpFuRyq9vH8D7aNFRdm4z1Xm9sGFOlQIGUFPaCQiJKLnEvyBkraYFsAq-2oIkhpWhd1ce20_GrYrT66aD67WBCL3aaY93Z5h_chS6-AeJRf9o</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Mandal, Sudeep</creator><creator>Goddard, Julie M</creator><creator>Erickson, David</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>A multiplexed optofluidic biomolecular sensor for low mass detection</title><author>Mandal, Sudeep ; Goddard, Julie M ; Erickson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Equipment Design</topic><topic>Immunoassay - instrumentation</topic><topic>Immunoassay - methods</topic><topic>Interleukin-4 - analysis</topic><topic>Interleukin-4 - immunology</topic><topic>Interleukin-6 - analysis</topic><topic>Interleukin-6 - immunology</topic><topic>Interleukin-8 - analysis</topic><topic>Interleukin-8 - immunology</topic><topic>Interleukins - analysis</topic><topic>Interleukins - immunology</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Optical Devices</topic><topic>Photons</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Sudeep</creatorcontrib><creatorcontrib>Goddard, Julie M</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Sudeep</au><au>Goddard, Julie M</au><au>Erickson, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiplexed optofluidic biomolecular sensor for low mass detection</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>9</volume><issue>20</issue><spage>2924</spage><epage>2932</epage><pages>2924-2932</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay.</abstract><cop>England</cop><pmid>19789745</pmid><doi>10.1039/b907826f</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2009-01, Vol.9 (20), p.2924-2932
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_67674407
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Equipment Design
Immunoassay - instrumentation
Immunoassay - methods
Interleukin-4 - analysis
Interleukin-4 - immunology
Interleukin-6 - analysis
Interleukin-6 - immunology
Interleukin-8 - analysis
Interleukin-8 - immunology
Interleukins - analysis
Interleukins - immunology
Microfluidic Analytical Techniques - instrumentation
Optical Devices
Photons
Sensitivity and Specificity
title A multiplexed optofluidic biomolecular sensor for low mass detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiplexed%20optofluidic%20biomolecular%20sensor%20for%20low%20mass%20detection&rft.jtitle=Lab%20on%20a%20chip&rft.au=Mandal,%20Sudeep&rft.date=2009-01-01&rft.volume=9&rft.issue=20&rft.spage=2924&rft.epage=2932&rft.pages=2924-2932&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b907826f&rft_dat=%3Cproquest_cross%3E21180591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21180591&rft_id=info:pmid/19789745&rfr_iscdi=true