A multiplexed optofluidic biomolecular sensor for low mass detection
Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant inte...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2009-01, Vol.9 (20), p.2924-2932 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2932 |
---|---|
container_issue | 20 |
container_start_page | 2924 |
container_title | Lab on a chip |
container_volume | 9 |
creator | Mandal, Sudeep Goddard, Julie M Erickson, David |
description | Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay. |
doi_str_mv | 10.1039/b907826f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67674407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21180591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMo7roK_gXSk3ip5quZznFZP2HBi55LmiZQSTc1aVH_eyu76nEPwwzDj_fgPULOGb1mVOBNjRRKrtwBmTMJIqesxMO_G2FGTlJ6o5QVUpXHZDa9SgRZzMntMutGP7S9t5-2yUI_BOfHtmlNVrehC96a0euYJbtJIWZuGh8-sk6nlDV2sGZow-aUHDntkz3b7QV5vb97WT3m6-eHp9VynRsBMOQMGlo7mIybBpBxEIpRzoUtVSEKIajgSmrtOKJR3IDTuhbGoZCAUmEpFuRyq9vH8D7aNFRdm4z1Xm9sGFOlQIGUFPaCQiJKLnEvyBkraYFsAq-2oIkhpWhd1ce20_GrYrT66aD67WBCL3aaY93Z5h_chS6-AeJRf9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21180591</pqid></control><display><type>article</type><title>A multiplexed optofluidic biomolecular sensor for low mass detection</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mandal, Sudeep ; Goddard, Julie M ; Erickson, David</creator><creatorcontrib>Mandal, Sudeep ; Goddard, Julie M ; Erickson, David</creatorcontrib><description>Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b907826f</identifier><identifier>PMID: 19789745</identifier><language>eng</language><publisher>England</publisher><subject>Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Equipment Design ; Immunoassay - instrumentation ; Immunoassay - methods ; Interleukin-4 - analysis ; Interleukin-4 - immunology ; Interleukin-6 - analysis ; Interleukin-6 - immunology ; Interleukin-8 - analysis ; Interleukin-8 - immunology ; Interleukins - analysis ; Interleukins - immunology ; Microfluidic Analytical Techniques - instrumentation ; Optical Devices ; Photons ; Sensitivity and Specificity</subject><ispartof>Lab on a chip, 2009-01, Vol.9 (20), p.2924-2932</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</citedby><cites>FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19789745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Sudeep</creatorcontrib><creatorcontrib>Goddard, Julie M</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><title>A multiplexed optofluidic biomolecular sensor for low mass detection</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay.</description><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Equipment Design</subject><subject>Immunoassay - instrumentation</subject><subject>Immunoassay - methods</subject><subject>Interleukin-4 - analysis</subject><subject>Interleukin-4 - immunology</subject><subject>Interleukin-6 - analysis</subject><subject>Interleukin-6 - immunology</subject><subject>Interleukin-8 - analysis</subject><subject>Interleukin-8 - immunology</subject><subject>Interleukins - analysis</subject><subject>Interleukins - immunology</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Optical Devices</subject><subject>Photons</subject><subject>Sensitivity and Specificity</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1LxDAQxYMo7roK_gXSk3ip5quZznFZP2HBi55LmiZQSTc1aVH_eyu76nEPwwzDj_fgPULOGb1mVOBNjRRKrtwBmTMJIqesxMO_G2FGTlJ6o5QVUpXHZDa9SgRZzMntMutGP7S9t5-2yUI_BOfHtmlNVrehC96a0euYJbtJIWZuGh8-sk6nlDV2sGZow-aUHDntkz3b7QV5vb97WT3m6-eHp9VynRsBMOQMGlo7mIybBpBxEIpRzoUtVSEKIajgSmrtOKJR3IDTuhbGoZCAUmEpFuRyq9vH8D7aNFRdm4z1Xm9sGFOlQIGUFPaCQiJKLnEvyBkraYFsAq-2oIkhpWhd1ce20_GrYrT66aD67WBCL3aaY93Z5h_chS6-AeJRf9o</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Mandal, Sudeep</creator><creator>Goddard, Julie M</creator><creator>Erickson, David</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>A multiplexed optofluidic biomolecular sensor for low mass detection</title><author>Mandal, Sudeep ; Goddard, Julie M ; Erickson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-17d0bf7974dd791273610223e865353303264aaf299c62c7faab3cf9347946983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Equipment Design</topic><topic>Immunoassay - instrumentation</topic><topic>Immunoassay - methods</topic><topic>Interleukin-4 - analysis</topic><topic>Interleukin-4 - immunology</topic><topic>Interleukin-6 - analysis</topic><topic>Interleukin-6 - immunology</topic><topic>Interleukin-8 - analysis</topic><topic>Interleukin-8 - immunology</topic><topic>Interleukins - analysis</topic><topic>Interleukins - immunology</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Optical Devices</topic><topic>Photons</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Sudeep</creatorcontrib><creatorcontrib>Goddard, Julie M</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Sudeep</au><au>Goddard, Julie M</au><au>Erickson, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiplexed optofluidic biomolecular sensor for low mass detection</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>9</volume><issue>20</issue><spage>2924</spage><epage>2932</epage><pages>2924-2932</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Optical techniques have proven to be well suited for in situ biomolecular sensing because they enable high fidelity measurements in aqueous environments, are minimally affected by background solution pH or ionic strength, and facilitate label-free detection. Recently, there has been significant interest in developing new classes of optically resonant biosensors possessing very high quality-factors. This high quality-factor enables them to resolve the presence of very small amounts of bound mass and leads to very low limits of detection. A drawback of these devices is that the majority of the resonant electromagnetic energy is confined within the solid light-guiding structure thus limiting the degree to which it overlaps with the bound matter. This in turn lowers the ultimate device sensitivity, or the change in output signal in response to changes in bound mass. Here we present a novel optofluidic biosensor platform that incorporates a unique one-dimensional photonic crystal resonator array which enables significantly stronger light-matter interaction. We show here how this, coupled with the ability of planar photonic crystals to spatially localize the optical field to mode volumes on the order of a wavelength cubed, enables a limit of detection on the order of 63 ag total bound mass (estimated using a polyelectrolyte growth model) and a device sensitivity an order of magnitude better than similar devices. The multiplexing capabilities of our sensor are demonstrated by the individual and concurrent detection of interleukins 4, 6 and 8 using a sandwich assay.</abstract><cop>England</cop><pmid>19789745</pmid><doi>10.1039/b907826f</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2009-01, Vol.9 (20), p.2924-2932 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_67674407 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biosensing Techniques - instrumentation Biosensing Techniques - methods Equipment Design Immunoassay - instrumentation Immunoassay - methods Interleukin-4 - analysis Interleukin-4 - immunology Interleukin-6 - analysis Interleukin-6 - immunology Interleukin-8 - analysis Interleukin-8 - immunology Interleukins - analysis Interleukins - immunology Microfluidic Analytical Techniques - instrumentation Optical Devices Photons Sensitivity and Specificity |
title | A multiplexed optofluidic biomolecular sensor for low mass detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiplexed%20optofluidic%20biomolecular%20sensor%20for%20low%20mass%20detection&rft.jtitle=Lab%20on%20a%20chip&rft.au=Mandal,%20Sudeep&rft.date=2009-01-01&rft.volume=9&rft.issue=20&rft.spage=2924&rft.epage=2932&rft.pages=2924-2932&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b907826f&rft_dat=%3Cproquest_cross%3E21180591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21180591&rft_id=info:pmid/19789745&rfr_iscdi=true |