A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae

The molecular mechanisms that enable yeast cells to detect and transmit cold signals and their physiological significance in the adaptive response to low temperatures are unknown. Here, we have demonstrated that the MAPK Hog1p is specifically activated in response to cold. Phosphorylation of Hog1p w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-02, Vol.281 (8), p.4638-4645
Hauptverfasser: Panadero, Joaquín, Pallotti, Claudia, Rodríguez-Vargas, Sonia, Randez-Gil, Francisca, Prieto, Jose A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4645
container_issue 8
container_start_page 4638
container_title The Journal of biological chemistry
container_volume 281
creator Panadero, Joaquín
Pallotti, Claudia
Rodríguez-Vargas, Sonia
Randez-Gil, Francisca
Prieto, Jose A.
description The molecular mechanisms that enable yeast cells to detect and transmit cold signals and their physiological significance in the adaptive response to low temperatures are unknown. Here, we have demonstrated that the MAPK Hog1p is specifically activated in response to cold. Phosphorylation of Hog1p was dependent on Pbs2p, the MAPK kinase (MAPKK) of the high osmolarity glycerol (HOG) pathway, and Ssk1p, the response regulator of the two-component system Sln1p-Ypd1p. However, Sho1p was not required. Interestingly, phosphorylation of Hog1p was stimulated at 30 °C in cells exposed to the membrane rigidifier agent dimethyl sulfoxide. Moreover, Hog1p activation occurred specifically through the Sln1 branch. This suggests that Sln1p monitors changes in membrane fluidity caused by cold. Quite remarkably, activation of Hog1p at low temperatures affected the transcriptional response to cold shock. Indeed, the absence of Hog1p impaired the cold-instigated expression of genes for trehalose- and glycerol-synthesizing enzymes and small chaperones. Moreover, a downward transfer to 12 or 4 °C stimulated the overproduction of glycerol in a Hog1p-dependent manner. However, hog1Δ mutant cells showed no growth defects at 12 °C as compared with the wild type. On the contrary, deletion of HOG1 or GPD1 decreased tolerance to freezing of wild-type cells preincubated at a low temperature, whereas no differences could be detected in cells shifted directly from 30 to –20 °C. Thus, exposure to low temperatures triggered a Hog1p-dependent accumulation of glycerol, which is essential for freeze protection.
doi_str_mv 10.1074/jbc.M512736200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67669128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819767568</els_id><sourcerecordid>67669128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-48760c1e1a443ffd5f09019d8722ae5b5d01afe26168b50d9cfdc5a8fa9da05e3</originalsourceid><addsrcrecordid>eNqFkU-P0zAQxS0EYsvClSOyOCCQSPE4ceIcq_3TIi0qEkVwsxxnQrxK6mK7rcqH2M-Mq1baE2Iuc_m9N6P3CHkNbAqsKj7dN2b6RQCv8pIz9oRMgMk8ywX8fEomjHHIai7kBXkRwj1LU9TwnFxAmVeQoAl5mNFrt1-H3naR2jVd4bhBr-PWI52ZaHc6YqCxR7qwv3q6DKMbtLfxQOfDwaB3A32_WM4_0K869nt9-Eh_9Nb09Boj-tGuk_jWI_5BunJDMl4bPJ75po3ptXdj8gg0-eDOBqvxJXnW6SHgq_O-JN9vb1ZXi-xuOf98NbvLjBAQs0JWJTOAoIsi77pWdKxmULey4lyjaETLQHfISyhlI1hbm641QstO161mAvNL8u7ku_Hu9xZDVKMNBodBr9FtgyqrsqyBy_-CUDFZFDVP4PQEGu9C8Nipjbej9gcFTB2rUqkq9VhVErw5O2-bEdtH_NxNAt6egD4lv7ceVWOd6XFUXIKSqijz43_yBGFKa2fRq2AsppTbJDBRtc7-64G_iimvEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17084492</pqid></control><display><type>article</type><title>A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Panadero, Joaquín ; Pallotti, Claudia ; Rodríguez-Vargas, Sonia ; Randez-Gil, Francisca ; Prieto, Jose A.</creator><creatorcontrib>Panadero, Joaquín ; Pallotti, Claudia ; Rodríguez-Vargas, Sonia ; Randez-Gil, Francisca ; Prieto, Jose A.</creatorcontrib><description>The molecular mechanisms that enable yeast cells to detect and transmit cold signals and their physiological significance in the adaptive response to low temperatures are unknown. Here, we have demonstrated that the MAPK Hog1p is specifically activated in response to cold. Phosphorylation of Hog1p was dependent on Pbs2p, the MAPK kinase (MAPKK) of the high osmolarity glycerol (HOG) pathway, and Ssk1p, the response regulator of the two-component system Sln1p-Ypd1p. However, Sho1p was not required. Interestingly, phosphorylation of Hog1p was stimulated at 30 °C in cells exposed to the membrane rigidifier agent dimethyl sulfoxide. Moreover, Hog1p activation occurred specifically through the Sln1 branch. This suggests that Sln1p monitors changes in membrane fluidity caused by cold. Quite remarkably, activation of Hog1p at low temperatures affected the transcriptional response to cold shock. Indeed, the absence of Hog1p impaired the cold-instigated expression of genes for trehalose- and glycerol-synthesizing enzymes and small chaperones. Moreover, a downward transfer to 12 or 4 °C stimulated the overproduction of glycerol in a Hog1p-dependent manner. However, hog1Δ mutant cells showed no growth defects at 12 °C as compared with the wild type. On the contrary, deletion of HOG1 or GPD1 decreased tolerance to freezing of wild-type cells preincubated at a low temperature, whereas no differences could be detected in cells shifted directly from 30 to –20 °C. Thus, exposure to low temperatures triggered a Hog1p-dependent accumulation of glycerol, which is essential for freeze protection.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M512736200</identifier><identifier>PMID: 16371351</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus ; Blotting, Northern ; Blotting, Western ; Dimethyl Sulfoxide - pharmacology ; DNA-Binding Proteins - metabolism ; Freezing ; Fungal Proteins - metabolism ; Glycerol - metabolism ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins - metabolism ; Microscopy, Fluorescence ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mitogen-Activated Protein Kinases - metabolism ; Osmolar Concentration ; Phosphorylation ; Plasmids - metabolism ; Protein Kinases ; RNA - metabolism ; RNA, Fungal - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Species Specificity ; Temperature ; Thermosensing</subject><ispartof>The Journal of biological chemistry, 2006-02, Vol.281 (8), p.4638-4645</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-48760c1e1a443ffd5f09019d8722ae5b5d01afe26168b50d9cfdc5a8fa9da05e3</citedby><cites>FETCH-LOGICAL-c551t-48760c1e1a443ffd5f09019d8722ae5b5d01afe26168b50d9cfdc5a8fa9da05e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16371351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panadero, Joaquín</creatorcontrib><creatorcontrib>Pallotti, Claudia</creatorcontrib><creatorcontrib>Rodríguez-Vargas, Sonia</creatorcontrib><creatorcontrib>Randez-Gil, Francisca</creatorcontrib><creatorcontrib>Prieto, Jose A.</creatorcontrib><title>A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The molecular mechanisms that enable yeast cells to detect and transmit cold signals and their physiological significance in the adaptive response to low temperatures are unknown. Here, we have demonstrated that the MAPK Hog1p is specifically activated in response to cold. Phosphorylation of Hog1p was dependent on Pbs2p, the MAPK kinase (MAPKK) of the high osmolarity glycerol (HOG) pathway, and Ssk1p, the response regulator of the two-component system Sln1p-Ypd1p. However, Sho1p was not required. Interestingly, phosphorylation of Hog1p was stimulated at 30 °C in cells exposed to the membrane rigidifier agent dimethyl sulfoxide. Moreover, Hog1p activation occurred specifically through the Sln1 branch. This suggests that Sln1p monitors changes in membrane fluidity caused by cold. Quite remarkably, activation of Hog1p at low temperatures affected the transcriptional response to cold shock. Indeed, the absence of Hog1p impaired the cold-instigated expression of genes for trehalose- and glycerol-synthesizing enzymes and small chaperones. Moreover, a downward transfer to 12 or 4 °C stimulated the overproduction of glycerol in a Hog1p-dependent manner. However, hog1Δ mutant cells showed no growth defects at 12 °C as compared with the wild type. On the contrary, deletion of HOG1 or GPD1 decreased tolerance to freezing of wild-type cells preincubated at a low temperature, whereas no differences could be detected in cells shifted directly from 30 to –20 °C. Thus, exposure to low temperatures triggered a Hog1p-dependent accumulation of glycerol, which is essential for freeze protection.</description><subject>Active Transport, Cell Nucleus</subject><subject>Blotting, Northern</subject><subject>Blotting, Western</subject><subject>Dimethyl Sulfoxide - pharmacology</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Freezing</subject><subject>Fungal Proteins - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Microscopy, Fluorescence</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Osmolar Concentration</subject><subject>Phosphorylation</subject><subject>Plasmids - metabolism</subject><subject>Protein Kinases</subject><subject>RNA - metabolism</subject><subject>RNA, Fungal - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Species Specificity</subject><subject>Temperature</subject><subject>Thermosensing</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-P0zAQxS0EYsvClSOyOCCQSPE4ceIcq_3TIi0qEkVwsxxnQrxK6mK7rcqH2M-Mq1baE2Iuc_m9N6P3CHkNbAqsKj7dN2b6RQCv8pIz9oRMgMk8ywX8fEomjHHIai7kBXkRwj1LU9TwnFxAmVeQoAl5mNFrt1-H3naR2jVd4bhBr-PWI52ZaHc6YqCxR7qwv3q6DKMbtLfxQOfDwaB3A32_WM4_0K869nt9-Eh_9Nb09Boj-tGuk_jWI_5BunJDMl4bPJ75po3ptXdj8gg0-eDOBqvxJXnW6SHgq_O-JN9vb1ZXi-xuOf98NbvLjBAQs0JWJTOAoIsi77pWdKxmULey4lyjaETLQHfISyhlI1hbm641QstO161mAvNL8u7ku_Hu9xZDVKMNBodBr9FtgyqrsqyBy_-CUDFZFDVP4PQEGu9C8Nipjbej9gcFTB2rUqkq9VhVErw5O2-bEdtH_NxNAt6egD4lv7ceVWOd6XFUXIKSqijz43_yBGFKa2fRq2AsppTbJDBRtc7-64G_iimvEA</recordid><startdate>20060224</startdate><enddate>20060224</enddate><creator>Panadero, Joaquín</creator><creator>Pallotti, Claudia</creator><creator>Rodríguez-Vargas, Sonia</creator><creator>Randez-Gil, Francisca</creator><creator>Prieto, Jose A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20060224</creationdate><title>A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae</title><author>Panadero, Joaquín ; Pallotti, Claudia ; Rodríguez-Vargas, Sonia ; Randez-Gil, Francisca ; Prieto, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-48760c1e1a443ffd5f09019d8722ae5b5d01afe26168b50d9cfdc5a8fa9da05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Blotting, Northern</topic><topic>Blotting, Western</topic><topic>Dimethyl Sulfoxide - pharmacology</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Freezing</topic><topic>Fungal Proteins - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Microscopy, Fluorescence</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Osmolar Concentration</topic><topic>Phosphorylation</topic><topic>Plasmids - metabolism</topic><topic>Protein Kinases</topic><topic>RNA - metabolism</topic><topic>RNA, Fungal - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Species Specificity</topic><topic>Temperature</topic><topic>Thermosensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panadero, Joaquín</creatorcontrib><creatorcontrib>Pallotti, Claudia</creatorcontrib><creatorcontrib>Rodríguez-Vargas, Sonia</creatorcontrib><creatorcontrib>Randez-Gil, Francisca</creatorcontrib><creatorcontrib>Prieto, Jose A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panadero, Joaquín</au><au>Pallotti, Claudia</au><au>Rodríguez-Vargas, Sonia</au><au>Randez-Gil, Francisca</au><au>Prieto, Jose A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-02-24</date><risdate>2006</risdate><volume>281</volume><issue>8</issue><spage>4638</spage><epage>4645</epage><pages>4638-4645</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The molecular mechanisms that enable yeast cells to detect and transmit cold signals and their physiological significance in the adaptive response to low temperatures are unknown. Here, we have demonstrated that the MAPK Hog1p is specifically activated in response to cold. Phosphorylation of Hog1p was dependent on Pbs2p, the MAPK kinase (MAPKK) of the high osmolarity glycerol (HOG) pathway, and Ssk1p, the response regulator of the two-component system Sln1p-Ypd1p. However, Sho1p was not required. Interestingly, phosphorylation of Hog1p was stimulated at 30 °C in cells exposed to the membrane rigidifier agent dimethyl sulfoxide. Moreover, Hog1p activation occurred specifically through the Sln1 branch. This suggests that Sln1p monitors changes in membrane fluidity caused by cold. Quite remarkably, activation of Hog1p at low temperatures affected the transcriptional response to cold shock. Indeed, the absence of Hog1p impaired the cold-instigated expression of genes for trehalose- and glycerol-synthesizing enzymes and small chaperones. Moreover, a downward transfer to 12 or 4 °C stimulated the overproduction of glycerol in a Hog1p-dependent manner. However, hog1Δ mutant cells showed no growth defects at 12 °C as compared with the wild type. On the contrary, deletion of HOG1 or GPD1 decreased tolerance to freezing of wild-type cells preincubated at a low temperature, whereas no differences could be detected in cells shifted directly from 30 to –20 °C. Thus, exposure to low temperatures triggered a Hog1p-dependent accumulation of glycerol, which is essential for freeze protection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16371351</pmid><doi>10.1074/jbc.M512736200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2006-02, Vol.281 (8), p.4638-4645
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_67669128
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Active Transport, Cell Nucleus
Blotting, Northern
Blotting, Western
Dimethyl Sulfoxide - pharmacology
DNA-Binding Proteins - metabolism
Freezing
Fungal Proteins - metabolism
Glycerol - metabolism
Intracellular Signaling Peptides and Proteins
Membrane Proteins - metabolism
Microscopy, Fluorescence
Mitogen-Activated Protein Kinase Kinases - metabolism
Mitogen-Activated Protein Kinases - metabolism
Osmolar Concentration
Phosphorylation
Plasmids - metabolism
Protein Kinases
RNA - metabolism
RNA, Fungal - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Species Specificity
Temperature
Thermosensing
title A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Downshift%20in%20Temperature%20Activates%20the%20High%20Osmolarity%20Glycerol%20(HOG)%20Pathway,%20Which%20Determines%20Freeze%20Tolerance%20in%20Saccharomyces%20cerevisiae&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Panadero,%20Joaqu%C3%ADn&rft.date=2006-02-24&rft.volume=281&rft.issue=8&rft.spage=4638&rft.epage=4645&rft.pages=4638-4645&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M512736200&rft_dat=%3Cproquest_cross%3E67669128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17084492&rft_id=info:pmid/16371351&rft_els_id=S0021925819767568&rfr_iscdi=true