Suitability of allogeneic sertoli cells for ex vivo gene delivery in the injured spinal cord
Cell-based gene delivery for gene therapy offers the advantages of long-term stable expression of proteins without the safety concerns associated with viral vectors. However, issues of immune rejection prevent the widespread use of allogeneic cell implants. In this study, we determine if Sertoli cel...
Gespeichert in:
Veröffentlicht in: | Experimental neurology 2006-03, Vol.198 (1), p.88-100 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cell-based gene delivery for gene therapy offers the advantages of long-term stable expression of proteins without the safety concerns associated with viral vectors. However, issues of immune rejection prevent the widespread use of allogeneic cell implants. In this study, we determine if Sertoli cells, known for their immune privileged status, are suitable vehicles for allogeneic cell-based gene delivery into the injured spinal cord. As proof of concept, Sertoli cells were modified with recombinant adenovirus expressing enhanced green fluorescent protein (eGFP) or a human trophic factor, neurotrophin-3 (hNT-3), and eGFP. Genetically modified Sertoli cells retained their immunosuppressive ability in vitro, based upon lymphocyte proliferation assays, and were capable of generating biologically relevant levels of NT-3. Similarly, modified, allogeneic cells, implanted into the acutely injured spinal cord, reduced the early inflammatory response while producing significant levels of hNT-3 for at least 3 days after grafting. Moreover, these cells survived for at least 42 days after implantation in the injured cord. Together, these results demonstrate that Sertoli cells function in immunomodulation, can be engineered to produce bioactive molecules, and show long-term survival after implantation into the hostile environment of the acutely injured spinal cord. Such long-term survival represents an important first step toward developing an optimal cell-based delivery system that generates sustained expression of a therapeutic molecule. |
---|---|
ISSN: | 0014-4886 1090-2430 |
DOI: | 10.1016/j.expneurol.2005.11.009 |