A hybrid rheological model for particulate suspension in zeolite crystal growth

A hybrid constitutive model is developed to represent the thixotropic behavior of particulate suspension during zeolite crystallization from solution. This model is valid over the complete solid fraction range typical for such a process. It employs two internal variables, agglomeration and contiguit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2006-03, Vol.295 (2), p.562-568
Hauptverfasser: Song, Hongwei, Ilegbusi, Olusegun J., Sacco, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hybrid constitutive model is developed to represent the thixotropic behavior of particulate suspension during zeolite crystallization from solution. This model is valid over the complete solid fraction range typical for such a process. It employs two internal variables, agglomeration and contiguity, to describe the degree to which the gel particles form short- and long-range networks. The contiguity is used to weigh the effects of hydrodynamic to chain-like network deformation on the suspension viscosity. Heterogeneous nucleation and surface reaction-controlled crystal growth are assumed to describe the evolution of microstructure and solid fraction of gel and crystals. Such a model successfully captures the thixotropic behavior of zeolite particulate suspension by comparison of the predictions with a set of experimental data. A hybrid constitutive model is developed to represent the thixotropic behavior of particulate suspension during zeolite crystallization from solution. This model is valid over the complete solid fraction range typical for such a process. It employs two internal variables, agglomeration and contiguity, to describe the degree to which the gel particles form short- and long-range networks. The contiguity is used to weigh the effects of hydrodynamic to chain-like network deformation on the suspension viscosity. Heterogeneous nucleation and surface reaction-controlled crystal growth are assumed to describe the evolution of microstructure and solid fraction of gel and crystals. Such a model successfully captures the thixotropic behavior of zeolite particulate suspension by comparison of the predictions with a set of experimental data.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2005.10.014