Forebrain Gonadotropin-Releasing Hormone Neuronal Development: Insights from Transgenic Medaka and the Relevance to X-Linked Kallmann Syndrome
Neurons that synthesize and release GnRH are essential for the central regulation of reproduction. Evidence suggests that forebrain GnRH neurons originate in the olfactory placode and migrate to their final destinations, although this is still a matter of controversy. X-linked Kallmann syndrome (X-K...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2006-03, Vol.147 (3), p.1076-1084 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1084 |
---|---|
container_issue | 3 |
container_start_page | 1076 |
container_title | Endocrinology (Philadelphia) |
container_volume | 147 |
creator | Okubo, Kataaki Sakai, Fumie Lau, En Lieng Yoshizaki, Goro Takeuchi, Yutaka Naruse, Kiyoshi Aida, Katsumi Nagahama, Yoshitaka |
description | Neurons that synthesize and release GnRH are essential for the central regulation of reproduction. Evidence suggests that forebrain GnRH neurons originate in the olfactory placode and migrate to their final destinations, although this is still a matter of controversy. X-linked Kallmann syndrome (X-KS), characterized by failed gonadal function secondary to deficient gonadotropin secretion, is caused by a mutation in KAL1, which is suggested to regulate the migration of forebrain GnRH neurons. Because rodents lack Kal1 in their genome and have GnRH neurons scattered throughout their forebrain, the development of forebrain GnRH neurons and the pathogenesis of X-KS have been difficult to study. In the present study, we generated transgenic medaka that expressed green fluorescent protein under the control of the gnrh1 and gnrh3 promoters for analyzing forebrain GnRH neuronal development. Our data revealed the presence of the following four gnrh1 neuronal populations: an olfactory region-derived ventral preoptic population, a dorsal preoptic population that migrates from the dorsal telencephalon, a medial ventral telencephalic population that migrates from the anterior telencephalon, and a nonmigratory ventral hypothalamic population. We found that all forebrain gnrh3 neurons, extending from the terminal nerve ganglion to the anterior mesencephalon, arise from the olfactory region and that trigeminal ganglion neurons express gnrh3. Maternal gnrh3 expression was also observed in oocytes and early embryos. We subsequently identified a KAL1 ortholog and its paralogous form in the medaka. Consistent with the X-KS phenotype, antisense knockdown of the medaka KAL1 ortholog resulted in the disruption of forebrain GnRH neuronal migration. Thus, these transgenic medaka provide a useful model system for studying GnRH neuronal development and disorders of GnRH deficiency. |
doi_str_mv | 10.1210/en.2005-0468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67667536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2005-0468</oup_id><sourcerecordid>67667536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-286c8e6d0f53a09928d5739c7de07c6c4869157108d170c9853adf02c0568443</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuBBFHtb3bmWgKgbp-ZjJh_dSWs_8Kqgd-FuSJMzt2lnkjGZKfRP-JvNcAcuiOIqBB7ek5y3KF4QfEwowe_BH1OM6xJXXD4qVkRVdSmIwI-LFcaElYJScVAcpnSbr1VVsafFAeFUMc7lqvh1HiJcR-08ughe2zDGMDhffoMOdHJ-iy5D7IMH9AWmmEWHzuAeujD04McTdOWT296MCbUx9GgTtU9b8M6gz2D1nUbaWzTeAJrz7rU3gMaAfpRr5-_Aok-663rtPfr-4G0OgGfFk1Z3CZ4v51GxOf-4Ob0s118vrk4_rEtTKTqWVHIjgVvc1kxjpai0tWDKCAtYGG4qyRWpBcHS5k0YJTOzLaYG11zmFRwVb3axQww_J0hj07tkoOu0hzClhgvORc34fyFRkjFG5sRXf8DbMMW8rtQwwnAtaa1oVu92ysSQUoS2GaLrdXxoCG7mNhvwzdxmM7eZ-csldLruwe7xUl8Grxegk9Fdm9dvXNq7_IeqEiq7tzsXpuFfI8tlJNtJ8DaY6DwMEVLa_-avD_0NBCvEPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130582592</pqid></control><display><type>article</type><title>Forebrain Gonadotropin-Releasing Hormone Neuronal Development: Insights from Transgenic Medaka and the Relevance to X-Linked Kallmann Syndrome</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Okubo, Kataaki ; Sakai, Fumie ; Lau, En Lieng ; Yoshizaki, Goro ; Takeuchi, Yutaka ; Naruse, Kiyoshi ; Aida, Katsumi ; Nagahama, Yoshitaka</creator><creatorcontrib>Okubo, Kataaki ; Sakai, Fumie ; Lau, En Lieng ; Yoshizaki, Goro ; Takeuchi, Yutaka ; Naruse, Kiyoshi ; Aida, Katsumi ; Nagahama, Yoshitaka</creatorcontrib><description>Neurons that synthesize and release GnRH are essential for the central regulation of reproduction. Evidence suggests that forebrain GnRH neurons originate in the olfactory placode and migrate to their final destinations, although this is still a matter of controversy. X-linked Kallmann syndrome (X-KS), characterized by failed gonadal function secondary to deficient gonadotropin secretion, is caused by a mutation in KAL1, which is suggested to regulate the migration of forebrain GnRH neurons. Because rodents lack Kal1 in their genome and have GnRH neurons scattered throughout their forebrain, the development of forebrain GnRH neurons and the pathogenesis of X-KS have been difficult to study. In the present study, we generated transgenic medaka that expressed green fluorescent protein under the control of the gnrh1 and gnrh3 promoters for analyzing forebrain GnRH neuronal development. Our data revealed the presence of the following four gnrh1 neuronal populations: an olfactory region-derived ventral preoptic population, a dorsal preoptic population that migrates from the dorsal telencephalon, a medial ventral telencephalic population that migrates from the anterior telencephalon, and a nonmigratory ventral hypothalamic population. We found that all forebrain gnrh3 neurons, extending from the terminal nerve ganglion to the anterior mesencephalon, arise from the olfactory region and that trigeminal ganglion neurons express gnrh3. Maternal gnrh3 expression was also observed in oocytes and early embryos. We subsequently identified a KAL1 ortholog and its paralogous form in the medaka. Consistent with the X-KS phenotype, antisense knockdown of the medaka KAL1 ortholog resulted in the disruption of forebrain GnRH neuronal migration. Thus, these transgenic medaka provide a useful model system for studying GnRH neuronal development and disorders of GnRH deficiency.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2005-0468</identifier><identifier>PMID: 16293668</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Bethesda, MD: Endocrine Society</publisher><subject>Animals ; Animals, Genetically Modified ; Biological and medical sciences ; Brain - metabolism ; Cell migration ; Chromosomes, Human, X ; Cloning, Molecular ; Cytoplasm - metabolism ; Disease Models, Animal ; DNA, Complementary - metabolism ; Embryos ; Endocrinopathies ; Fluorescence ; Forebrain ; Fundamental and applied biological sciences. Psychology ; Gametocytes ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Genetic Linkage ; Gonadotropin-releasing hormone ; Gonadotropin-Releasing Hormone - metabolism ; Gonadotropins ; Green fluorescent protein ; Green Fluorescent Proteins - metabolism ; Humans ; Hypothalamus ; Hypothalamus - metabolism ; Hypothalamus. Hypophysis. Epiphysis (diseases) ; In Situ Hybridization ; Kallmann Syndrome - genetics ; Kallmann's syndrome ; Malformations of the nervous system ; Medical sciences ; Mesencephalon ; Metabolic diseases ; Miscellaneous ; Models, Genetic ; Neurogenesis ; Neurology ; Neurons ; Neurons - metabolism ; Non tumoral diseases. Target tissue resistance. Benign neoplasms ; Olfactory Bulb - metabolism ; Olfactory Pathways - metabolism ; Olfactory placode ; Oocytes ; Oryzias - genetics ; Oryzias latipes ; Other metabolic disorders ; Pathogenesis ; Phenotypes ; Phylogeny ; Pituitary (anterior) ; Prosencephalon - metabolism ; Telencephalon ; Terminal nerve ; Terminal nerve ganglion ; Time Factors ; Transgenes ; Trigeminal ganglion ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2006-03, Vol.147 (3), p.1076-1084</ispartof><rights>Copyright © 2006 by The Endocrine Society 2006</rights><rights>2006 INIST-CNRS</rights><rights>Copyright © 2006 by The Endocrine Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-286c8e6d0f53a09928d5739c7de07c6c4869157108d170c9853adf02c0568443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17534479$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16293668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okubo, Kataaki</creatorcontrib><creatorcontrib>Sakai, Fumie</creatorcontrib><creatorcontrib>Lau, En Lieng</creatorcontrib><creatorcontrib>Yoshizaki, Goro</creatorcontrib><creatorcontrib>Takeuchi, Yutaka</creatorcontrib><creatorcontrib>Naruse, Kiyoshi</creatorcontrib><creatorcontrib>Aida, Katsumi</creatorcontrib><creatorcontrib>Nagahama, Yoshitaka</creatorcontrib><title>Forebrain Gonadotropin-Releasing Hormone Neuronal Development: Insights from Transgenic Medaka and the Relevance to X-Linked Kallmann Syndrome</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Neurons that synthesize and release GnRH are essential for the central regulation of reproduction. Evidence suggests that forebrain GnRH neurons originate in the olfactory placode and migrate to their final destinations, although this is still a matter of controversy. X-linked Kallmann syndrome (X-KS), characterized by failed gonadal function secondary to deficient gonadotropin secretion, is caused by a mutation in KAL1, which is suggested to regulate the migration of forebrain GnRH neurons. Because rodents lack Kal1 in their genome and have GnRH neurons scattered throughout their forebrain, the development of forebrain GnRH neurons and the pathogenesis of X-KS have been difficult to study. In the present study, we generated transgenic medaka that expressed green fluorescent protein under the control of the gnrh1 and gnrh3 promoters for analyzing forebrain GnRH neuronal development. Our data revealed the presence of the following four gnrh1 neuronal populations: an olfactory region-derived ventral preoptic population, a dorsal preoptic population that migrates from the dorsal telencephalon, a medial ventral telencephalic population that migrates from the anterior telencephalon, and a nonmigratory ventral hypothalamic population. We found that all forebrain gnrh3 neurons, extending from the terminal nerve ganglion to the anterior mesencephalon, arise from the olfactory region and that trigeminal ganglion neurons express gnrh3. Maternal gnrh3 expression was also observed in oocytes and early embryos. We subsequently identified a KAL1 ortholog and its paralogous form in the medaka. Consistent with the X-KS phenotype, antisense knockdown of the medaka KAL1 ortholog resulted in the disruption of forebrain GnRH neuronal migration. Thus, these transgenic medaka provide a useful model system for studying GnRH neuronal development and disorders of GnRH deficiency.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biological and medical sciences</subject><subject>Brain - metabolism</subject><subject>Cell migration</subject><subject>Chromosomes, Human, X</subject><subject>Cloning, Molecular</subject><subject>Cytoplasm - metabolism</subject><subject>Disease Models, Animal</subject><subject>DNA, Complementary - metabolism</subject><subject>Embryos</subject><subject>Endocrinopathies</subject><subject>Fluorescence</subject><subject>Forebrain</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gametocytes</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic Linkage</subject><subject>Gonadotropin-releasing hormone</subject><subject>Gonadotropin-Releasing Hormone - metabolism</subject><subject>Gonadotropins</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Hypothalamus</subject><subject>Hypothalamus - metabolism</subject><subject>Hypothalamus. Hypophysis. Epiphysis (diseases)</subject><subject>In Situ Hybridization</subject><subject>Kallmann Syndrome - genetics</subject><subject>Kallmann's syndrome</subject><subject>Malformations of the nervous system</subject><subject>Medical sciences</subject><subject>Mesencephalon</subject><subject>Metabolic diseases</subject><subject>Miscellaneous</subject><subject>Models, Genetic</subject><subject>Neurogenesis</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Non tumoral diseases. Target tissue resistance. Benign neoplasms</subject><subject>Olfactory Bulb - metabolism</subject><subject>Olfactory Pathways - metabolism</subject><subject>Olfactory placode</subject><subject>Oocytes</subject><subject>Oryzias - genetics</subject><subject>Oryzias latipes</subject><subject>Other metabolic disorders</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Pituitary (anterior)</subject><subject>Prosencephalon - metabolism</subject><subject>Telencephalon</subject><subject>Terminal nerve</subject><subject>Terminal nerve ganglion</subject><subject>Time Factors</subject><subject>Transgenes</subject><subject>Trigeminal ganglion</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuBBFHtb3bmWgKgbp-ZjJh_dSWs_8Kqgd-FuSJMzt2lnkjGZKfRP-JvNcAcuiOIqBB7ek5y3KF4QfEwowe_BH1OM6xJXXD4qVkRVdSmIwI-LFcaElYJScVAcpnSbr1VVsafFAeFUMc7lqvh1HiJcR-08ughe2zDGMDhffoMOdHJ-iy5D7IMH9AWmmEWHzuAeujD04McTdOWT296MCbUx9GgTtU9b8M6gz2D1nUbaWzTeAJrz7rU3gMaAfpRr5-_Aok-663rtPfr-4G0OgGfFk1Z3CZ4v51GxOf-4Ob0s118vrk4_rEtTKTqWVHIjgVvc1kxjpai0tWDKCAtYGG4qyRWpBcHS5k0YJTOzLaYG11zmFRwVb3axQww_J0hj07tkoOu0hzClhgvORc34fyFRkjFG5sRXf8DbMMW8rtQwwnAtaa1oVu92ysSQUoS2GaLrdXxoCG7mNhvwzdxmM7eZ-csldLruwe7xUl8Grxegk9Fdm9dvXNq7_IeqEiq7tzsXpuFfI8tlJNtJ8DaY6DwMEVLa_-avD_0NBCvEPw</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Okubo, Kataaki</creator><creator>Sakai, Fumie</creator><creator>Lau, En Lieng</creator><creator>Yoshizaki, Goro</creator><creator>Takeuchi, Yutaka</creator><creator>Naruse, Kiyoshi</creator><creator>Aida, Katsumi</creator><creator>Nagahama, Yoshitaka</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7QO</scope><scope>7TK</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Forebrain Gonadotropin-Releasing Hormone Neuronal Development: Insights from Transgenic Medaka and the Relevance to X-Linked Kallmann Syndrome</title><author>Okubo, Kataaki ; Sakai, Fumie ; Lau, En Lieng ; Yoshizaki, Goro ; Takeuchi, Yutaka ; Naruse, Kiyoshi ; Aida, Katsumi ; Nagahama, Yoshitaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-286c8e6d0f53a09928d5739c7de07c6c4869157108d170c9853adf02c0568443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biological and medical sciences</topic><topic>Brain - metabolism</topic><topic>Cell migration</topic><topic>Chromosomes, Human, X</topic><topic>Cloning, Molecular</topic><topic>Cytoplasm - metabolism</topic><topic>Disease Models, Animal</topic><topic>DNA, Complementary - metabolism</topic><topic>Embryos</topic><topic>Endocrinopathies</topic><topic>Fluorescence</topic><topic>Forebrain</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gametocytes</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic Linkage</topic><topic>Gonadotropin-releasing hormone</topic><topic>Gonadotropin-Releasing Hormone - metabolism</topic><topic>Gonadotropins</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Hypothalamus</topic><topic>Hypothalamus - metabolism</topic><topic>Hypothalamus. Hypophysis. Epiphysis (diseases)</topic><topic>In Situ Hybridization</topic><topic>Kallmann Syndrome - genetics</topic><topic>Kallmann's syndrome</topic><topic>Malformations of the nervous system</topic><topic>Medical sciences</topic><topic>Mesencephalon</topic><topic>Metabolic diseases</topic><topic>Miscellaneous</topic><topic>Models, Genetic</topic><topic>Neurogenesis</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Non tumoral diseases. Target tissue resistance. Benign neoplasms</topic><topic>Olfactory Bulb - metabolism</topic><topic>Olfactory Pathways - metabolism</topic><topic>Olfactory placode</topic><topic>Oocytes</topic><topic>Oryzias - genetics</topic><topic>Oryzias latipes</topic><topic>Other metabolic disorders</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Pituitary (anterior)</topic><topic>Prosencephalon - metabolism</topic><topic>Telencephalon</topic><topic>Terminal nerve</topic><topic>Terminal nerve ganglion</topic><topic>Time Factors</topic><topic>Transgenes</topic><topic>Trigeminal ganglion</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okubo, Kataaki</creatorcontrib><creatorcontrib>Sakai, Fumie</creatorcontrib><creatorcontrib>Lau, En Lieng</creatorcontrib><creatorcontrib>Yoshizaki, Goro</creatorcontrib><creatorcontrib>Takeuchi, Yutaka</creatorcontrib><creatorcontrib>Naruse, Kiyoshi</creatorcontrib><creatorcontrib>Aida, Katsumi</creatorcontrib><creatorcontrib>Nagahama, Yoshitaka</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okubo, Kataaki</au><au>Sakai, Fumie</au><au>Lau, En Lieng</au><au>Yoshizaki, Goro</au><au>Takeuchi, Yutaka</au><au>Naruse, Kiyoshi</au><au>Aida, Katsumi</au><au>Nagahama, Yoshitaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forebrain Gonadotropin-Releasing Hormone Neuronal Development: Insights from Transgenic Medaka and the Relevance to X-Linked Kallmann Syndrome</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>147</volume><issue>3</issue><spage>1076</spage><epage>1084</epage><pages>1076-1084</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Neurons that synthesize and release GnRH are essential for the central regulation of reproduction. Evidence suggests that forebrain GnRH neurons originate in the olfactory placode and migrate to their final destinations, although this is still a matter of controversy. X-linked Kallmann syndrome (X-KS), characterized by failed gonadal function secondary to deficient gonadotropin secretion, is caused by a mutation in KAL1, which is suggested to regulate the migration of forebrain GnRH neurons. Because rodents lack Kal1 in their genome and have GnRH neurons scattered throughout their forebrain, the development of forebrain GnRH neurons and the pathogenesis of X-KS have been difficult to study. In the present study, we generated transgenic medaka that expressed green fluorescent protein under the control of the gnrh1 and gnrh3 promoters for analyzing forebrain GnRH neuronal development. Our data revealed the presence of the following four gnrh1 neuronal populations: an olfactory region-derived ventral preoptic population, a dorsal preoptic population that migrates from the dorsal telencephalon, a medial ventral telencephalic population that migrates from the anterior telencephalon, and a nonmigratory ventral hypothalamic population. We found that all forebrain gnrh3 neurons, extending from the terminal nerve ganglion to the anterior mesencephalon, arise from the olfactory region and that trigeminal ganglion neurons express gnrh3. Maternal gnrh3 expression was also observed in oocytes and early embryos. We subsequently identified a KAL1 ortholog and its paralogous form in the medaka. Consistent with the X-KS phenotype, antisense knockdown of the medaka KAL1 ortholog resulted in the disruption of forebrain GnRH neuronal migration. Thus, these transgenic medaka provide a useful model system for studying GnRH neuronal development and disorders of GnRH deficiency.</abstract><cop>Bethesda, MD</cop><pub>Endocrine Society</pub><pmid>16293668</pmid><doi>10.1210/en.2005-0468</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2006-03, Vol.147 (3), p.1076-1084 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_67667536 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Animals, Genetically Modified Biological and medical sciences Brain - metabolism Cell migration Chromosomes, Human, X Cloning, Molecular Cytoplasm - metabolism Disease Models, Animal DNA, Complementary - metabolism Embryos Endocrinopathies Fluorescence Forebrain Fundamental and applied biological sciences. Psychology Gametocytes Gene Expression Regulation Gene Expression Regulation, Developmental Genetic Linkage Gonadotropin-releasing hormone Gonadotropin-Releasing Hormone - metabolism Gonadotropins Green fluorescent protein Green Fluorescent Proteins - metabolism Humans Hypothalamus Hypothalamus - metabolism Hypothalamus. Hypophysis. Epiphysis (diseases) In Situ Hybridization Kallmann Syndrome - genetics Kallmann's syndrome Malformations of the nervous system Medical sciences Mesencephalon Metabolic diseases Miscellaneous Models, Genetic Neurogenesis Neurology Neurons Neurons - metabolism Non tumoral diseases. Target tissue resistance. Benign neoplasms Olfactory Bulb - metabolism Olfactory Pathways - metabolism Olfactory placode Oocytes Oryzias - genetics Oryzias latipes Other metabolic disorders Pathogenesis Phenotypes Phylogeny Pituitary (anterior) Prosencephalon - metabolism Telencephalon Terminal nerve Terminal nerve ganglion Time Factors Transgenes Trigeminal ganglion Vertebrates: endocrinology |
title | Forebrain Gonadotropin-Releasing Hormone Neuronal Development: Insights from Transgenic Medaka and the Relevance to X-Linked Kallmann Syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forebrain%20Gonadotropin-Releasing%20Hormone%20Neuronal%20Development:%20Insights%20from%20Transgenic%20Medaka%20and%20the%20Relevance%20to%20X-Linked%20Kallmann%20Syndrome&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Okubo,%20Kataaki&rft.date=2006-03-01&rft.volume=147&rft.issue=3&rft.spage=1076&rft.epage=1084&rft.pages=1076-1084&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2005-0468&rft_dat=%3Cproquest_cross%3E67667536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130582592&rft_id=info:pmid/16293668&rft_oup_id=10.1210/en.2005-0468&rfr_iscdi=true |