Infant Air and Bone Conduction Tone Burst Auditory Brain Stem Responses for Classification of Hearing Loss and the Relationship to Behavioral Thresholds

OBJECTIVE:A clinical protocol for diagnosing hearing loss (HL) in infants designed to meet early intervention guidelines was used with the goals of providing normative data for (1) frequency-specific tone burst auditory brain stem response (TBABR) thresholds by air conduction (AC) and bone conductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ear and hearing 2009-06, Vol.30 (3), p.350-368
Hauptverfasser: Vander Werff, Kathy R, Prieve, Beth A, Georgantas, Lea M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 3
container_start_page 350
container_title Ear and hearing
container_volume 30
creator Vander Werff, Kathy R
Prieve, Beth A
Georgantas, Lea M
description OBJECTIVE:A clinical protocol for diagnosing hearing loss (HL) in infants designed to meet early intervention guidelines was used with the goals of providing normative data for (1) frequency-specific tone burst auditory brain stem response (TBABR) thresholds by air conduction (AC) and bone conduction (BC) in early infancy used to classify type and severity of HL, (2) ear-specific behavioral thresholds for these same infants by 1 yr of age, and (3) the relationship between TBABR thresholds and behavioral thresholds for this group of infants. DESIGN:AC- and BC-TBABRs were measured in young infants (mean age,
doi_str_mv 10.1097/AUD.0b013e31819f3145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67665787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67665787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3845-b2cb56e9c979a9140e766174ca5a21df38b2fb93baf5175635d6bb105b3e9f5a3</originalsourceid><addsrcrecordid>eNp90c2O0zAUBWALgZgy8AYIeQO7Dv6JnXjZlp8ZqRISdNaRnVwTg2sX34TRvAmPS6atQGLByrL0nSNbh5CXnF1xZuq3q9t3V8wxLkHyhhsveaUekQVXsllWWtePyYJxo5dMMHFBniF-Y4wLo6un5IIbKQRrqgX5dZO8TSNdhUJt6uk6J6CbnPqpG0NOdPdwX08FZzL1Yczlnq6LDYl-GWFPPwMeckJA6nOhm2gRgw-dPWazp9dgS0hf6TYjHvvHAeZQPAIcwoGOma5hsD9DLjbS3VAAhxx7fE6eeBsRXpzPS3L74f1uc73cfvp4s1ltl51sKrV0onNKg-lMbazhFYNaa15XnVVW8N7LxgnvjHTWK14rLVWvneNMOQnGKysvyZtT76HkHxPg2O4DdhCjTZAnbPXcp-qmnmF1gl2ZP1PAt4cS9rbct5y1D4u08yLtv4vMsVfn_sntof8bOk8wg9dnYLGz0RebuoB_nOBVLXRjZtec3F2OIxT8Hqc7KO0ANo7D_9_wG7uJqHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67665787</pqid></control><display><type>article</type><title>Infant Air and Bone Conduction Tone Burst Auditory Brain Stem Responses for Classification of Hearing Loss and the Relationship to Behavioral Thresholds</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Vander Werff, Kathy R ; Prieve, Beth A ; Georgantas, Lea M</creator><creatorcontrib>Vander Werff, Kathy R ; Prieve, Beth A ; Georgantas, Lea M</creatorcontrib><description>OBJECTIVE:A clinical protocol for diagnosing hearing loss (HL) in infants designed to meet early intervention guidelines was used with the goals of providing normative data for (1) frequency-specific tone burst auditory brain stem response (TBABR) thresholds by air conduction (AC) and bone conduction (BC) in early infancy used to classify type and severity of HL, (2) ear-specific behavioral thresholds for these same infants by 1 yr of age, and (3) the relationship between TBABR thresholds and behavioral thresholds for this group of infants. DESIGN:AC- and BC-TBABRs were measured in young infants (mean age, &lt;3 mo) under natural sleep to classify the type and severity of HL (conductive, sensorineural, or mixed). A small group of normal-hearing adults undergoing the same TBABR protocol served as a control group. Threshold and latency data for AC- and BC-ABR were analyzed for infants classified as having normal hearing and for those with and without conductive HL. The ability to detect conductive HL based on ABR latencies evoked by clicks presented at 80 dB nHL was assessed. Behavioral thresholds using visual reinforcement audiometry (VRA) were measured in infants at a mean age of approximately 10 mo. The relationship between TBABR and behavioral thresholds obtained in infancy was analyzed, and the prediction of behavioral thresholds from TBABR thresholds was examined. RESULTS:Mean TBABR thresholds in young infants with normal hearing tested under natural sleep were similar to previously published data. The relationship between AC- and BC-TBABR thresholds differed as a function of stimulus frequency for infants but not adults. A mean air-bone gap (ABG) of 15 dB was present at 500 Hz even in normal-hearing infants, with those infants classified as having conductive HL presenting with substantially larger ABGs. Wave V latency functions for AC- and BC-TBABR also differed between infants and adults as a function of frequency. Infant BC-TBABR latencies were well matched between those with normal hearing and conductive HL, whereas AC-TBABR latency functions separated these groups. Mean VRA thresholds using insert phones in normal-hearing infants tested were between 14 and 17 dB HL for all three test frequencies at a mean age of 9.7 mo. Correlations between TBABR and VRA thresholds, both obtained during infancy, were strong for all three test frequencies (r = 0.86, 0.90, and 0.91 for 500, 2000, and 4000 Hz, respectively). CONCLUSIONS:AC- and BC-TBABR results can be readily obtained in young infants under natural sleep and were used to classify the type of HL based on the absolute threshold and the size of the ABG. Differences in wave V latency functions for TBABR by AC and BC and wave I and V latencies of the high-level click ABR also distinguish between infants with and without TBABR ABGs. Ear-specific behavioral responses can be obtained at levels under 20 dB HL in normal-hearing infants younger than 1 yr using VRA, and these behavioral thresholds correlate well with TBABR thresholds obtained on average 6.5 mo previously in this population. The current results suggest that protocols for obtaining AC- and BC-TBABR and behavioral thresholds that meet guidelines for early intervention are clinically feasible.</description><identifier>ISSN: 0196-0202</identifier><identifier>EISSN: 1538-4667</identifier><identifier>DOI: 10.1097/AUD.0b013e31819f3145</identifier><identifier>PMID: 19322084</identifier><identifier>CODEN: EAHEDS</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins, Inc</publisher><subject>Acoustic Stimulation ; Age Factors ; Air ; Audiometry - methods ; Auditory Threshold - physiology ; Biological and medical sciences ; Bone Conduction - physiology ; Diagnosis, Differential ; Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology ; Evoked Potentials, Auditory, Brain Stem - physiology ; Female ; Hearing Loss - diagnosis ; Hearing Loss - physiopathology ; Hearing Loss, Conductive - diagnosis ; Hearing Loss, Conductive - physiopathology ; Hearing Loss, Mixed Conductive-Sensorineural - diagnosis ; Hearing Loss, Mixed Conductive-Sensorineural - physiopathology ; Hearing Loss, Sensorineural - diagnosis ; Hearing Loss, Sensorineural - physiopathology ; Humans ; Infant ; Male ; Medical sciences ; Non tumoral diseases ; Otorhinolaryngology. Stomatology ; Pilot Projects ; Reaction Time - physiology ; Severity of Illness Index ; Young Adult</subject><ispartof>Ear and hearing, 2009-06, Vol.30 (3), p.350-368</ispartof><rights>2009 Lippincott Williams &amp; Wilkins, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3845-b2cb56e9c979a9140e766174ca5a21df38b2fb93baf5175635d6bb105b3e9f5a3</citedby><cites>FETCH-LOGICAL-c3845-b2cb56e9c979a9140e766174ca5a21df38b2fb93baf5175635d6bb105b3e9f5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21472689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19322084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vander Werff, Kathy R</creatorcontrib><creatorcontrib>Prieve, Beth A</creatorcontrib><creatorcontrib>Georgantas, Lea M</creatorcontrib><title>Infant Air and Bone Conduction Tone Burst Auditory Brain Stem Responses for Classification of Hearing Loss and the Relationship to Behavioral Thresholds</title><title>Ear and hearing</title><addtitle>Ear Hear</addtitle><description>OBJECTIVE:A clinical protocol for diagnosing hearing loss (HL) in infants designed to meet early intervention guidelines was used with the goals of providing normative data for (1) frequency-specific tone burst auditory brain stem response (TBABR) thresholds by air conduction (AC) and bone conduction (BC) in early infancy used to classify type and severity of HL, (2) ear-specific behavioral thresholds for these same infants by 1 yr of age, and (3) the relationship between TBABR thresholds and behavioral thresholds for this group of infants. DESIGN:AC- and BC-TBABRs were measured in young infants (mean age, &lt;3 mo) under natural sleep to classify the type and severity of HL (conductive, sensorineural, or mixed). A small group of normal-hearing adults undergoing the same TBABR protocol served as a control group. Threshold and latency data for AC- and BC-ABR were analyzed for infants classified as having normal hearing and for those with and without conductive HL. The ability to detect conductive HL based on ABR latencies evoked by clicks presented at 80 dB nHL was assessed. Behavioral thresholds using visual reinforcement audiometry (VRA) were measured in infants at a mean age of approximately 10 mo. The relationship between TBABR and behavioral thresholds obtained in infancy was analyzed, and the prediction of behavioral thresholds from TBABR thresholds was examined. RESULTS:Mean TBABR thresholds in young infants with normal hearing tested under natural sleep were similar to previously published data. The relationship between AC- and BC-TBABR thresholds differed as a function of stimulus frequency for infants but not adults. A mean air-bone gap (ABG) of 15 dB was present at 500 Hz even in normal-hearing infants, with those infants classified as having conductive HL presenting with substantially larger ABGs. Wave V latency functions for AC- and BC-TBABR also differed between infants and adults as a function of frequency. Infant BC-TBABR latencies were well matched between those with normal hearing and conductive HL, whereas AC-TBABR latency functions separated these groups. Mean VRA thresholds using insert phones in normal-hearing infants tested were between 14 and 17 dB HL for all three test frequencies at a mean age of 9.7 mo. Correlations between TBABR and VRA thresholds, both obtained during infancy, were strong for all three test frequencies (r = 0.86, 0.90, and 0.91 for 500, 2000, and 4000 Hz, respectively). CONCLUSIONS:AC- and BC-TBABR results can be readily obtained in young infants under natural sleep and were used to classify the type of HL based on the absolute threshold and the size of the ABG. Differences in wave V latency functions for TBABR by AC and BC and wave I and V latencies of the high-level click ABR also distinguish between infants with and without TBABR ABGs. Ear-specific behavioral responses can be obtained at levels under 20 dB HL in normal-hearing infants younger than 1 yr using VRA, and these behavioral thresholds correlate well with TBABR thresholds obtained on average 6.5 mo previously in this population. The current results suggest that protocols for obtaining AC- and BC-TBABR and behavioral thresholds that meet guidelines for early intervention are clinically feasible.</description><subject>Acoustic Stimulation</subject><subject>Age Factors</subject><subject>Air</subject><subject>Audiometry - methods</subject><subject>Auditory Threshold - physiology</subject><subject>Biological and medical sciences</subject><subject>Bone Conduction - physiology</subject><subject>Diagnosis, Differential</subject><subject>Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology</subject><subject>Evoked Potentials, Auditory, Brain Stem - physiology</subject><subject>Female</subject><subject>Hearing Loss - diagnosis</subject><subject>Hearing Loss - physiopathology</subject><subject>Hearing Loss, Conductive - diagnosis</subject><subject>Hearing Loss, Conductive - physiopathology</subject><subject>Hearing Loss, Mixed Conductive-Sensorineural - diagnosis</subject><subject>Hearing Loss, Mixed Conductive-Sensorineural - physiopathology</subject><subject>Hearing Loss, Sensorineural - diagnosis</subject><subject>Hearing Loss, Sensorineural - physiopathology</subject><subject>Humans</subject><subject>Infant</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Non tumoral diseases</subject><subject>Otorhinolaryngology. Stomatology</subject><subject>Pilot Projects</subject><subject>Reaction Time - physiology</subject><subject>Severity of Illness Index</subject><subject>Young Adult</subject><issn>0196-0202</issn><issn>1538-4667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c2O0zAUBWALgZgy8AYIeQO7Dv6JnXjZlp8ZqRISdNaRnVwTg2sX34TRvAmPS6atQGLByrL0nSNbh5CXnF1xZuq3q9t3V8wxLkHyhhsveaUekQVXsllWWtePyYJxo5dMMHFBniF-Y4wLo6un5IIbKQRrqgX5dZO8TSNdhUJt6uk6J6CbnPqpG0NOdPdwX08FZzL1Yczlnq6LDYl-GWFPPwMeckJA6nOhm2gRgw-dPWazp9dgS0hf6TYjHvvHAeZQPAIcwoGOma5hsD9DLjbS3VAAhxx7fE6eeBsRXpzPS3L74f1uc73cfvp4s1ltl51sKrV0onNKg-lMbazhFYNaa15XnVVW8N7LxgnvjHTWK14rLVWvneNMOQnGKysvyZtT76HkHxPg2O4DdhCjTZAnbPXcp-qmnmF1gl2ZP1PAt4cS9rbct5y1D4u08yLtv4vMsVfn_sntof8bOk8wg9dnYLGz0RebuoB_nOBVLXRjZtec3F2OIxT8Hqc7KO0ANo7D_9_wG7uJqHw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Vander Werff, Kathy R</creator><creator>Prieve, Beth A</creator><creator>Georgantas, Lea M</creator><general>Lippincott Williams &amp; Wilkins, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200906</creationdate><title>Infant Air and Bone Conduction Tone Burst Auditory Brain Stem Responses for Classification of Hearing Loss and the Relationship to Behavioral Thresholds</title><author>Vander Werff, Kathy R ; Prieve, Beth A ; Georgantas, Lea M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3845-b2cb56e9c979a9140e766174ca5a21df38b2fb93baf5175635d6bb105b3e9f5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic Stimulation</topic><topic>Age Factors</topic><topic>Air</topic><topic>Audiometry - methods</topic><topic>Auditory Threshold - physiology</topic><topic>Biological and medical sciences</topic><topic>Bone Conduction - physiology</topic><topic>Diagnosis, Differential</topic><topic>Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology</topic><topic>Evoked Potentials, Auditory, Brain Stem - physiology</topic><topic>Female</topic><topic>Hearing Loss - diagnosis</topic><topic>Hearing Loss - physiopathology</topic><topic>Hearing Loss, Conductive - diagnosis</topic><topic>Hearing Loss, Conductive - physiopathology</topic><topic>Hearing Loss, Mixed Conductive-Sensorineural - diagnosis</topic><topic>Hearing Loss, Mixed Conductive-Sensorineural - physiopathology</topic><topic>Hearing Loss, Sensorineural - diagnosis</topic><topic>Hearing Loss, Sensorineural - physiopathology</topic><topic>Humans</topic><topic>Infant</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Non tumoral diseases</topic><topic>Otorhinolaryngology. Stomatology</topic><topic>Pilot Projects</topic><topic>Reaction Time - physiology</topic><topic>Severity of Illness Index</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vander Werff, Kathy R</creatorcontrib><creatorcontrib>Prieve, Beth A</creatorcontrib><creatorcontrib>Georgantas, Lea M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ear and hearing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vander Werff, Kathy R</au><au>Prieve, Beth A</au><au>Georgantas, Lea M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infant Air and Bone Conduction Tone Burst Auditory Brain Stem Responses for Classification of Hearing Loss and the Relationship to Behavioral Thresholds</atitle><jtitle>Ear and hearing</jtitle><addtitle>Ear Hear</addtitle><date>2009-06</date><risdate>2009</risdate><volume>30</volume><issue>3</issue><spage>350</spage><epage>368</epage><pages>350-368</pages><issn>0196-0202</issn><eissn>1538-4667</eissn><coden>EAHEDS</coden><abstract>OBJECTIVE:A clinical protocol for diagnosing hearing loss (HL) in infants designed to meet early intervention guidelines was used with the goals of providing normative data for (1) frequency-specific tone burst auditory brain stem response (TBABR) thresholds by air conduction (AC) and bone conduction (BC) in early infancy used to classify type and severity of HL, (2) ear-specific behavioral thresholds for these same infants by 1 yr of age, and (3) the relationship between TBABR thresholds and behavioral thresholds for this group of infants. DESIGN:AC- and BC-TBABRs were measured in young infants (mean age, &lt;3 mo) under natural sleep to classify the type and severity of HL (conductive, sensorineural, or mixed). A small group of normal-hearing adults undergoing the same TBABR protocol served as a control group. Threshold and latency data for AC- and BC-ABR were analyzed for infants classified as having normal hearing and for those with and without conductive HL. The ability to detect conductive HL based on ABR latencies evoked by clicks presented at 80 dB nHL was assessed. Behavioral thresholds using visual reinforcement audiometry (VRA) were measured in infants at a mean age of approximately 10 mo. The relationship between TBABR and behavioral thresholds obtained in infancy was analyzed, and the prediction of behavioral thresholds from TBABR thresholds was examined. RESULTS:Mean TBABR thresholds in young infants with normal hearing tested under natural sleep were similar to previously published data. The relationship between AC- and BC-TBABR thresholds differed as a function of stimulus frequency for infants but not adults. A mean air-bone gap (ABG) of 15 dB was present at 500 Hz even in normal-hearing infants, with those infants classified as having conductive HL presenting with substantially larger ABGs. Wave V latency functions for AC- and BC-TBABR also differed between infants and adults as a function of frequency. Infant BC-TBABR latencies were well matched between those with normal hearing and conductive HL, whereas AC-TBABR latency functions separated these groups. Mean VRA thresholds using insert phones in normal-hearing infants tested were between 14 and 17 dB HL for all three test frequencies at a mean age of 9.7 mo. Correlations between TBABR and VRA thresholds, both obtained during infancy, were strong for all three test frequencies (r = 0.86, 0.90, and 0.91 for 500, 2000, and 4000 Hz, respectively). CONCLUSIONS:AC- and BC-TBABR results can be readily obtained in young infants under natural sleep and were used to classify the type of HL based on the absolute threshold and the size of the ABG. Differences in wave V latency functions for TBABR by AC and BC and wave I and V latencies of the high-level click ABR also distinguish between infants with and without TBABR ABGs. Ear-specific behavioral responses can be obtained at levels under 20 dB HL in normal-hearing infants younger than 1 yr using VRA, and these behavioral thresholds correlate well with TBABR thresholds obtained on average 6.5 mo previously in this population. The current results suggest that protocols for obtaining AC- and BC-TBABR and behavioral thresholds that meet guidelines for early intervention are clinically feasible.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins, Inc</pub><pmid>19322084</pmid><doi>10.1097/AUD.0b013e31819f3145</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-0202
ispartof Ear and hearing, 2009-06, Vol.30 (3), p.350-368
issn 0196-0202
1538-4667
language eng
recordid cdi_proquest_miscellaneous_67665787
source MEDLINE; Journals@Ovid Complete
subjects Acoustic Stimulation
Age Factors
Air
Audiometry - methods
Auditory Threshold - physiology
Biological and medical sciences
Bone Conduction - physiology
Diagnosis, Differential
Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology
Evoked Potentials, Auditory, Brain Stem - physiology
Female
Hearing Loss - diagnosis
Hearing Loss - physiopathology
Hearing Loss, Conductive - diagnosis
Hearing Loss, Conductive - physiopathology
Hearing Loss, Mixed Conductive-Sensorineural - diagnosis
Hearing Loss, Mixed Conductive-Sensorineural - physiopathology
Hearing Loss, Sensorineural - diagnosis
Hearing Loss, Sensorineural - physiopathology
Humans
Infant
Male
Medical sciences
Non tumoral diseases
Otorhinolaryngology. Stomatology
Pilot Projects
Reaction Time - physiology
Severity of Illness Index
Young Adult
title Infant Air and Bone Conduction Tone Burst Auditory Brain Stem Responses for Classification of Hearing Loss and the Relationship to Behavioral Thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infant%20Air%20and%20Bone%20Conduction%20Tone%20Burst%20Auditory%20Brain%20Stem%20Responses%20for%20Classification%20of%20Hearing%20Loss%20and%20the%20Relationship%20to%20Behavioral%20Thresholds&rft.jtitle=Ear%20and%20hearing&rft.au=Vander%20Werff,%20Kathy%20R&rft.date=2009-06&rft.volume=30&rft.issue=3&rft.spage=350&rft.epage=368&rft.pages=350-368&rft.issn=0196-0202&rft.eissn=1538-4667&rft.coden=EAHEDS&rft_id=info:doi/10.1097/AUD.0b013e31819f3145&rft_dat=%3Cproquest_cross%3E67665787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67665787&rft_id=info:pmid/19322084&rfr_iscdi=true