The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells

The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2009-10, Vol.8 (10), p.818-824
Hauptverfasser: Janssen, René A. J, Oosterhout, Stefan D, Wienk, Martijn M, van Bavel, Svetlana S, Thiedmann, Ralf, Jan Anton Koster, L, Gilot, Jan, Loos, Joachim, Schmidt, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 10
container_start_page 818
container_title Nature materials
container_volume 8
creator Janssen, René A. J
Oosterhout, Stefan D
Wienk, Martijn M
van Bavel, Svetlana S
Thiedmann, Ralf
Jan Anton Koster, L
Gilot, Jan
Loos, Joachim
Schmidt, Volker
description The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization of these bulk heterojunction morphologies in three dimensions has been challenging and has hampered progress in this area. Here, we spatially resolve the morphology of 2%-efficient hybrid solar cells consisting of poly(3-hexylthiophene) as the donor and ZnO as the acceptor in the nanometre range by electron tomography. The morphology is statistically analysed for spherical contact distance and percolation pathways. Together with solving the three-dimensional exciton-diffusion equation, a consistent and quantitative correlation between solar-cell performance, photophysical data and the three-dimensional morphology has been obtained for devices with different layer thicknesses that enables differentiating between generation and transport as limiting factors to performance. The performance of hybrid solar cells depends critically on the morphology of both the polymeric and the inorganic components. Electron tomography is used to resolve the morphology in three dimensions; coupling this information with three-dimensional exciton-diffusion studies enables the differentiation of charge generation and transport as performance-limiting factors.
doi_str_mv 10.1038/nmat2533
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67664738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1866692481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-5d827c10d5ce568c931594724429191081b6e711799c4e7edc85b69a97bbb7293</originalsourceid><addsrcrecordid>eNqF0U1LwzAYB_AgitMp-AmkeBA9VJM0L81Rhm8w8DIvXkqbPl072mYm7aHf3szVDQTxlMDzyz_J8yB0QfAdwVF83zZpR3kUHaATwqQImRD4cNwTQukEnTq3wpgSzsUxmhAlmZJCnKCPRQkBFAXoLjBF0JUWIMyrBlpXmTatg8bYdWlqsxwC0_r6t650Ba0eNifKIbNVHqxNPTRgA2fq1AYa6tqdoaMirR2cj-sUvT89LmYv4fzt-XX2MA81U6oLeR5TqQnOuQYuYq0iwhWTlDGqiCI4JpkASYhUSjOQkOuYZ0KlSmZZJqmKpuh6m7u25rMH1yVN5TYvSFswvUuE_yiTUfwvjDjmEePCw6tfcGV667vhEkqp5LFvpEc3W6Stcc5Ckaxt1aR2SAhONlNJfqbi6eWY12cN5Hs4jsGD2y1wvtQuwe4v_DusTbvewi5sB74AbEWfig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222758021</pqid></control><display><type>article</type><title>The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells</title><source>Nature</source><source>SpringerNature Journals</source><creator>Janssen, René A. J ; Oosterhout, Stefan D ; Wienk, Martijn M ; van Bavel, Svetlana S ; Thiedmann, Ralf ; Jan Anton Koster, L ; Gilot, Jan ; Loos, Joachim ; Schmidt, Volker</creator><creatorcontrib>Janssen, René A. J ; Oosterhout, Stefan D ; Wienk, Martijn M ; van Bavel, Svetlana S ; Thiedmann, Ralf ; Jan Anton Koster, L ; Gilot, Jan ; Loos, Joachim ; Schmidt, Volker</creatorcontrib><description>The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization of these bulk heterojunction morphologies in three dimensions has been challenging and has hampered progress in this area. Here, we spatially resolve the morphology of 2%-efficient hybrid solar cells consisting of poly(3-hexylthiophene) as the donor and ZnO as the acceptor in the nanometre range by electron tomography. The morphology is statistically analysed for spherical contact distance and percolation pathways. Together with solving the three-dimensional exciton-diffusion equation, a consistent and quantitative correlation between solar-cell performance, photophysical data and the three-dimensional morphology has been obtained for devices with different layer thicknesses that enables differentiating between generation and transport as limiting factors to performance. The performance of hybrid solar cells depends critically on the morphology of both the polymeric and the inorganic components. Electron tomography is used to resolve the morphology in three dimensions; coupling this information with three-dimensional exciton-diffusion studies enables the differentiation of charge generation and transport as performance-limiting factors.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2533</identifier><identifier>PMID: 19749766</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Limiting factors ; Materials Science ; Nanomaterials ; Nanotechnology ; Optical and Electronic Materials ; Percolation ; Photovoltaic cells ; Polymers ; Semiconductors ; Solar cells</subject><ispartof>Nature materials, 2009-10, Vol.8 (10), p.818-824</ispartof><rights>Springer Nature Limited 2009</rights><rights>Copyright Nature Publishing Group Oct 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-5d827c10d5ce568c931594724429191081b6e711799c4e7edc85b69a97bbb7293</citedby><cites>FETCH-LOGICAL-c499t-5d827c10d5ce568c931594724429191081b6e711799c4e7edc85b69a97bbb7293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat2533$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat2533$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19749766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janssen, René A. J</creatorcontrib><creatorcontrib>Oosterhout, Stefan D</creatorcontrib><creatorcontrib>Wienk, Martijn M</creatorcontrib><creatorcontrib>van Bavel, Svetlana S</creatorcontrib><creatorcontrib>Thiedmann, Ralf</creatorcontrib><creatorcontrib>Jan Anton Koster, L</creatorcontrib><creatorcontrib>Gilot, Jan</creatorcontrib><creatorcontrib>Loos, Joachim</creatorcontrib><creatorcontrib>Schmidt, Volker</creatorcontrib><title>The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization of these bulk heterojunction morphologies in three dimensions has been challenging and has hampered progress in this area. Here, we spatially resolve the morphology of 2%-efficient hybrid solar cells consisting of poly(3-hexylthiophene) as the donor and ZnO as the acceptor in the nanometre range by electron tomography. The morphology is statistically analysed for spherical contact distance and percolation pathways. Together with solving the three-dimensional exciton-diffusion equation, a consistent and quantitative correlation between solar-cell performance, photophysical data and the three-dimensional morphology has been obtained for devices with different layer thicknesses that enables differentiating between generation and transport as limiting factors to performance. The performance of hybrid solar cells depends critically on the morphology of both the polymeric and the inorganic components. Electron tomography is used to resolve the morphology in three dimensions; coupling this information with three-dimensional exciton-diffusion studies enables the differentiation of charge generation and transport as performance-limiting factors.</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Limiting factors</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Percolation</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Semiconductors</subject><subject>Solar cells</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LwzAYB_AgitMp-AmkeBA9VJM0L81Rhm8w8DIvXkqbPl072mYm7aHf3szVDQTxlMDzyz_J8yB0QfAdwVF83zZpR3kUHaATwqQImRD4cNwTQukEnTq3wpgSzsUxmhAlmZJCnKCPRQkBFAXoLjBF0JUWIMyrBlpXmTatg8bYdWlqsxwC0_r6t650Ba0eNifKIbNVHqxNPTRgA2fq1AYa6tqdoaMirR2cj-sUvT89LmYv4fzt-XX2MA81U6oLeR5TqQnOuQYuYq0iwhWTlDGqiCI4JpkASYhUSjOQkOuYZ0KlSmZZJqmKpuh6m7u25rMH1yVN5TYvSFswvUuE_yiTUfwvjDjmEePCw6tfcGV667vhEkqp5LFvpEc3W6Stcc5Ckaxt1aR2SAhONlNJfqbi6eWY12cN5Hs4jsGD2y1wvtQuwe4v_DusTbvewi5sB74AbEWfig</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Janssen, René A. J</creator><creator>Oosterhout, Stefan D</creator><creator>Wienk, Martijn M</creator><creator>van Bavel, Svetlana S</creator><creator>Thiedmann, Ralf</creator><creator>Jan Anton Koster, L</creator><creator>Gilot, Jan</creator><creator>Loos, Joachim</creator><creator>Schmidt, Volker</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20091001</creationdate><title>The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells</title><author>Janssen, René A. J ; Oosterhout, Stefan D ; Wienk, Martijn M ; van Bavel, Svetlana S ; Thiedmann, Ralf ; Jan Anton Koster, L ; Gilot, Jan ; Loos, Joachim ; Schmidt, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-5d827c10d5ce568c931594724429191081b6e711799c4e7edc85b69a97bbb7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Limiting factors</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Percolation</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Semiconductors</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssen, René A. J</creatorcontrib><creatorcontrib>Oosterhout, Stefan D</creatorcontrib><creatorcontrib>Wienk, Martijn M</creatorcontrib><creatorcontrib>van Bavel, Svetlana S</creatorcontrib><creatorcontrib>Thiedmann, Ralf</creatorcontrib><creatorcontrib>Jan Anton Koster, L</creatorcontrib><creatorcontrib>Gilot, Jan</creatorcontrib><creatorcontrib>Loos, Joachim</creatorcontrib><creatorcontrib>Schmidt, Volker</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssen, René A. J</au><au>Oosterhout, Stefan D</au><au>Wienk, Martijn M</au><au>van Bavel, Svetlana S</au><au>Thiedmann, Ralf</au><au>Jan Anton Koster, L</au><au>Gilot, Jan</au><au>Loos, Joachim</au><au>Schmidt, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>8</volume><issue>10</issue><spage>818</spage><epage>824</epage><pages>818-824</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization of these bulk heterojunction morphologies in three dimensions has been challenging and has hampered progress in this area. Here, we spatially resolve the morphology of 2%-efficient hybrid solar cells consisting of poly(3-hexylthiophene) as the donor and ZnO as the acceptor in the nanometre range by electron tomography. The morphology is statistically analysed for spherical contact distance and percolation pathways. Together with solving the three-dimensional exciton-diffusion equation, a consistent and quantitative correlation between solar-cell performance, photophysical data and the three-dimensional morphology has been obtained for devices with different layer thicknesses that enables differentiating between generation and transport as limiting factors to performance. The performance of hybrid solar cells depends critically on the morphology of both the polymeric and the inorganic components. Electron tomography is used to resolve the morphology in three dimensions; coupling this information with three-dimensional exciton-diffusion studies enables the differentiation of charge generation and transport as performance-limiting factors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19749766</pmid><doi>10.1038/nmat2533</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2009-10, Vol.8 (10), p.818-824
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_67664738
source Nature; SpringerNature Journals
subjects Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Limiting factors
Materials Science
Nanomaterials
Nanotechnology
Optical and Electronic Materials
Percolation
Photovoltaic cells
Polymers
Semiconductors
Solar cells
title The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20three-dimensional%20morphology%20on%20the%20efficiency%20of%20hybrid%20polymer%20solar%20cells&rft.jtitle=Nature%20materials&rft.au=Janssen,%20Ren%C3%A9%20A.%20J&rft.date=2009-10-01&rft.volume=8&rft.issue=10&rft.spage=818&rft.epage=824&rft.pages=818-824&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2533&rft_dat=%3Cproquest_cross%3E1866692481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222758021&rft_id=info:pmid/19749766&rfr_iscdi=true