Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters

Studies of synapsin‐deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2006-03, Vol.96 (5), p.1458-1466
Hauptverfasser: Bogen, Inger Lise, Boulland, Jean‐Luc, Mariussen, Espen, Wright, Marianne S., Fonnum, Frode, Kao, Hung‐Teh, Walaas, S. Ivar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1466
container_issue 5
container_start_page 1458
container_title Journal of neurochemistry
container_volume 96
creator Bogen, Inger Lise
Boulland, Jean‐Luc
Mariussen, Espen
Wright, Marianne S.
Fonnum, Frode
Kao, Hung‐Teh
Walaas, S. Ivar
description Studies of synapsin‐deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild‐type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double‐labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.
doi_str_mv 10.1111/j.1471-4159.2005.03636.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67662118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>988695551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5716-7924b79fbd9f0cffd57e573f8f8ac1ae80dfb116abe9ce5c6a606c0f1426b2a73</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotvCX0AWEtyS-iO2kwOHagVlq4peytlynLHkVb7wJND99yS7KypxAV_G0jzzyuOHEMpZzpdzvc95YXhWcFXlgjGVM6mlzp9ekM2fxkuyYUyITLJCXJBLxD1jXBeavyYXSzWlkmJDupsaofdAh0Dx0LsRY0931PUN3e1oROq8H7rR9REaWh9oAz6BQ0C6cD8Bo59bl-iUXI_jkKZjzgg-huhpD3Majq0uThMkfENeBdcivD3XK_L9y-fH7dfs_uF2t725z7wyXGemEkVtqlA3VWA-hEYZUEaGMpTOcwcla0LNuXY1VB6U104z7VnghdC1cEZekY-n3DENP2bAyXYRPbSt62GY0WqjteC8_CfIDVdGlGvi-7_A_TCnflnCCqZVUZVSLlB5gnwaEBMEO6bYuXSwnNlVnN3b1Y9d_dhVnD2Ks0_L6Ltz_lx30DwPnk0twIcz4NC7Niy_6iM-c0bJQlfrRp9O3K_YwuG_H2Dvvm3Xm_wNRgS01w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206549833</pqid></control><display><type>article</type><title>Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bogen, Inger Lise ; Boulland, Jean‐Luc ; Mariussen, Espen ; Wright, Marianne S. ; Fonnum, Frode ; Kao, Hung‐Teh ; Walaas, S. Ivar</creator><creatorcontrib>Bogen, Inger Lise ; Boulland, Jean‐Luc ; Mariussen, Espen ; Wright, Marianne S. ; Fonnum, Frode ; Kao, Hung‐Teh ; Walaas, S. Ivar</creatorcontrib><description>Studies of synapsin‐deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild‐type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double‐labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2005.03636.x</identifier><identifier>PMID: 16478532</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Biochemistry and metabolism ; Biological and medical sciences ; Cell physiology ; Central nervous system ; colocalization ; Fluorescent Antibody Technique - methods ; Fundamental and applied biological sciences. Psychology ; Gene Expression - genetics ; Genes ; Glial Fibrillary Acidic Protein - metabolism ; knockout ; Membrane and intracellular transports ; Mice ; Mice, Knockout ; Microscopy, Confocal - methods ; Molecular and cellular biology ; Neurotransmitter Agents - metabolism ; neurotransmitter transport ; Neurotransmitters ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - metabolism ; Rodents ; Subcellular Fractions - metabolism ; synapsin ; Synapsins - deficiency ; Synapsins - physiology ; synaptic vesicles ; Synaptosomes - metabolism ; Vertebrates: nervous system and sense organs ; Vesicular Neurotransmitter Transport Proteins - classification ; Vesicular Neurotransmitter Transport Proteins - metabolism ; vesicular transporters</subject><ispartof>Journal of neurochemistry, 2006-03, Vol.96 (5), p.1458-1466</ispartof><rights>2006 INIST-CNRS</rights><rights>2006 The Authors Journal Compilation 2006 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5716-7924b79fbd9f0cffd57e573f8f8ac1ae80dfb116abe9ce5c6a606c0f1426b2a73</citedby><cites>FETCH-LOGICAL-c5716-7924b79fbd9f0cffd57e573f8f8ac1ae80dfb116abe9ce5c6a606c0f1426b2a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2005.03636.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2005.03636.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17534698$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16478532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogen, Inger Lise</creatorcontrib><creatorcontrib>Boulland, Jean‐Luc</creatorcontrib><creatorcontrib>Mariussen, Espen</creatorcontrib><creatorcontrib>Wright, Marianne S.</creatorcontrib><creatorcontrib>Fonnum, Frode</creatorcontrib><creatorcontrib>Kao, Hung‐Teh</creatorcontrib><creatorcontrib>Walaas, S. Ivar</creatorcontrib><title>Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Studies of synapsin‐deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild‐type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double‐labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.</description><subject>Animals</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Central nervous system</subject><subject>colocalization</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression - genetics</subject><subject>Genes</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>knockout</subject><subject>Membrane and intracellular transports</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Confocal - methods</subject><subject>Molecular and cellular biology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>neurotransmitter transport</subject><subject>Neurotransmitters</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Subcellular Fractions - metabolism</subject><subject>synapsin</subject><subject>Synapsins - deficiency</subject><subject>Synapsins - physiology</subject><subject>synaptic vesicles</subject><subject>Synaptosomes - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vesicular Neurotransmitter Transport Proteins - classification</subject><subject>Vesicular Neurotransmitter Transport Proteins - metabolism</subject><subject>vesicular transporters</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EotvCX0AWEtyS-iO2kwOHagVlq4peytlynLHkVb7wJND99yS7KypxAV_G0jzzyuOHEMpZzpdzvc95YXhWcFXlgjGVM6mlzp9ekM2fxkuyYUyITLJCXJBLxD1jXBeavyYXSzWlkmJDupsaofdAh0Dx0LsRY0931PUN3e1oROq8H7rR9REaWh9oAz6BQ0C6cD8Bo59bl-iUXI_jkKZjzgg-huhpD3Majq0uThMkfENeBdcivD3XK_L9y-fH7dfs_uF2t725z7wyXGemEkVtqlA3VWA-hEYZUEaGMpTOcwcla0LNuXY1VB6U104z7VnghdC1cEZekY-n3DENP2bAyXYRPbSt62GY0WqjteC8_CfIDVdGlGvi-7_A_TCnflnCCqZVUZVSLlB5gnwaEBMEO6bYuXSwnNlVnN3b1Y9d_dhVnD2Ks0_L6Ltz_lx30DwPnk0twIcz4NC7Niy_6iM-c0bJQlfrRp9O3K_YwuG_H2Dvvm3Xm_wNRgS01w</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Bogen, Inger Lise</creator><creator>Boulland, Jean‐Luc</creator><creator>Mariussen, Espen</creator><creator>Wright, Marianne S.</creator><creator>Fonnum, Frode</creator><creator>Kao, Hung‐Teh</creator><creator>Walaas, S. Ivar</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200603</creationdate><title>Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters</title><author>Bogen, Inger Lise ; Boulland, Jean‐Luc ; Mariussen, Espen ; Wright, Marianne S. ; Fonnum, Frode ; Kao, Hung‐Teh ; Walaas, S. Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5716-7924b79fbd9f0cffd57e573f8f8ac1ae80dfb116abe9ce5c6a606c0f1426b2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Central nervous system</topic><topic>colocalization</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression - genetics</topic><topic>Genes</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>knockout</topic><topic>Membrane and intracellular transports</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Confocal - methods</topic><topic>Molecular and cellular biology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>neurotransmitter transport</topic><topic>Neurotransmitters</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Subcellular Fractions - metabolism</topic><topic>synapsin</topic><topic>Synapsins - deficiency</topic><topic>Synapsins - physiology</topic><topic>synaptic vesicles</topic><topic>Synaptosomes - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vesicular Neurotransmitter Transport Proteins - classification</topic><topic>Vesicular Neurotransmitter Transport Proteins - metabolism</topic><topic>vesicular transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogen, Inger Lise</creatorcontrib><creatorcontrib>Boulland, Jean‐Luc</creatorcontrib><creatorcontrib>Mariussen, Espen</creatorcontrib><creatorcontrib>Wright, Marianne S.</creatorcontrib><creatorcontrib>Fonnum, Frode</creatorcontrib><creatorcontrib>Kao, Hung‐Teh</creatorcontrib><creatorcontrib>Walaas, S. Ivar</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogen, Inger Lise</au><au>Boulland, Jean‐Luc</au><au>Mariussen, Espen</au><au>Wright, Marianne S.</au><au>Fonnum, Frode</au><au>Kao, Hung‐Teh</au><au>Walaas, S. Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2006-03</date><risdate>2006</risdate><volume>96</volume><issue>5</issue><spage>1458</spage><epage>1466</epage><pages>1458-1466</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Studies of synapsin‐deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild‐type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double‐labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16478532</pmid><doi>10.1111/j.1471-4159.2005.03636.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2006-03, Vol.96 (5), p.1458-1466
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_67662118
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; Free Full-Text Journals in Chemistry
subjects Animals
Biochemistry and metabolism
Biological and medical sciences
Cell physiology
Central nervous system
colocalization
Fluorescent Antibody Technique - methods
Fundamental and applied biological sciences. Psychology
Gene Expression - genetics
Genes
Glial Fibrillary Acidic Protein - metabolism
knockout
Membrane and intracellular transports
Mice
Mice, Knockout
Microscopy, Confocal - methods
Molecular and cellular biology
Neurotransmitter Agents - metabolism
neurotransmitter transport
Neurotransmitters
Proteins
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - metabolism
Rodents
Subcellular Fractions - metabolism
synapsin
Synapsins - deficiency
Synapsins - physiology
synaptic vesicles
Synaptosomes - metabolism
Vertebrates: nervous system and sense organs
Vesicular Neurotransmitter Transport Proteins - classification
Vesicular Neurotransmitter Transport Proteins - metabolism
vesicular transporters
title Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absence%20of%20synapsin%20I%20and%20II%20is%20accompanied%20by%20decreases%20in%20vesicular%20transport%20of%20specific%20neurotransmitters&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Bogen,%20Inger%20Lise&rft.date=2006-03&rft.volume=96&rft.issue=5&rft.spage=1458&rft.epage=1466&rft.pages=1458-1466&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2005.03636.x&rft_dat=%3Cproquest_cross%3E988695551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206549833&rft_id=info:pmid/16478532&rfr_iscdi=true