A classification of tasks for the systematic study of immune response using functional genomics data

A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasitology 2006-02, Vol.132 (2), p.157-167
Hauptverfasser: HEDELER, C., PATON, N. W., BEHNKE, J. M., BRADLEY, J. E., HAMSHERE, M. G., ELSE, K. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 2
container_start_page 157
container_title Parasitology
container_volume 132
creator HEDELER, C.
PATON, N. W.
BEHNKE, J. M.
BRADLEY, J. E.
HAMSHERE, M. G.
ELSE, K. J.
description A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.
doi_str_mv 10.1017/S0031182005008796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67658740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0031182005008796</cupid><sourcerecordid>67658740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYModlv9A3yRINi30Xwn81iLVkuhSBXEl-FuJrOmnY9t7gy4_70ZdnChUnzKw_ndk3vuIeQVZ-844_b9DWOScycY04w5W5onZMWVKQvHDX9KVrNczPoROUa8ZYwZacRzcsSNskJxuSL1GfUtIMYmehjj0NOhoSPgHdJmSHT8FSjucAxdFj3Fcap3MxG7buoDTQG3Q4-BThj7DW2m3s8e0NJN6IcueqQ1jPCCPGugxfByeU_I908fv51_Lq6uL76cn10VXnMxFsLV1pdOl1x7puqgmdLgVQg1NF5Is1Z16Zxi4EpgHEzJLGjllAKvzdoweUJO977bNNxPAceqi-hD20IfhgkrY412Vv0fFPlnq7jI4JsH4O0wpRwwM_nSQkruMsT3kE8DYgpNtU2xg7SrOKvmoqp_isozrxfjad2F-jCxNJOBtwsA6KFtEvQ-4oGzmpeC8cwVey7mln7_1SHd5bjS6spcfK3E5c3PD1L9qOZEclkWunWK9SYcIj2-7h_Zabgu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214623318</pqid></control><display><type>article</type><title>A classification of tasks for the systematic study of immune response using functional genomics data</title><source>MEDLINE</source><source>Cambridge Journals</source><creator>HEDELER, C. ; PATON, N. W. ; BEHNKE, J. M. ; BRADLEY, J. E. ; HAMSHERE, M. G. ; ELSE, K. J.</creator><creatorcontrib>HEDELER, C. ; PATON, N. W. ; BEHNKE, J. M. ; BRADLEY, J. E. ; HAMSHERE, M. G. ; ELSE, K. J.</creatorcontrib><description>A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.</description><identifier>ISSN: 0031-1820</identifier><identifier>EISSN: 1469-8161</identifier><identifier>DOI: 10.1017/S0031182005008796</identifier><identifier>PMID: 16472413</identifier><identifier>CODEN: PARAAE</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Allergy and Immunology - classification ; Animals ; Biological and medical sciences ; Classification ; Data Collection - classification ; Data Collection - methods ; Data Collection - standards ; Experimental data ; Experiments ; Fundamental and applied biological sciences. Psychology ; Gene expression ; General aspects ; General aspects and techniques. Study of several systematic groups. Models ; Genomics - methods ; Heligmosomoides polygyrus ; Hypotheses ; Immune response ; Immune system ; Immunity, Active - genetics ; Immunization ; intestinal nematode ; Invertebrates ; Mice ; Nemathelminthia. Plathelmintha ; Nematospiroides dubius - immunology ; Oligonucleotide Array Sequence Analysis - methods ; Parasites ; Pathogens ; Statistics as Topic - classification ; Statistics as Topic - methods ; Statistics as Topic - standards ; Strongylida Infections - genetics ; Strongylida Infections - immunology ; Studies ; systematic immunological bioinformatics ; Task Performance and Analysis ; Trichuriasis - genetics ; Trichuriasis - immunology ; Trichuris - immunology ; Trichuris muris</subject><ispartof>Parasitology, 2006-02, Vol.132 (2), p.157-167</ispartof><rights>2005 Cambridge University Press</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Cambridge University Press Feb 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</citedby><cites>FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0031182005008796/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17519201$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16472413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HEDELER, C.</creatorcontrib><creatorcontrib>PATON, N. W.</creatorcontrib><creatorcontrib>BEHNKE, J. M.</creatorcontrib><creatorcontrib>BRADLEY, J. E.</creatorcontrib><creatorcontrib>HAMSHERE, M. G.</creatorcontrib><creatorcontrib>ELSE, K. J.</creatorcontrib><title>A classification of tasks for the systematic study of immune response using functional genomics data</title><title>Parasitology</title><addtitle>Parasitology</addtitle><description>A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.</description><subject>Allergy and Immunology - classification</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Data Collection - classification</subject><subject>Data Collection - methods</subject><subject>Data Collection - standards</subject><subject>Experimental data</subject><subject>Experiments</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>General aspects</subject><subject>General aspects and techniques. Study of several systematic groups. Models</subject><subject>Genomics - methods</subject><subject>Heligmosomoides polygyrus</subject><subject>Hypotheses</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Active - genetics</subject><subject>Immunization</subject><subject>intestinal nematode</subject><subject>Invertebrates</subject><subject>Mice</subject><subject>Nemathelminthia. Plathelmintha</subject><subject>Nematospiroides dubius - immunology</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Parasites</subject><subject>Pathogens</subject><subject>Statistics as Topic - classification</subject><subject>Statistics as Topic - methods</subject><subject>Statistics as Topic - standards</subject><subject>Strongylida Infections - genetics</subject><subject>Strongylida Infections - immunology</subject><subject>Studies</subject><subject>systematic immunological bioinformatics</subject><subject>Task Performance and Analysis</subject><subject>Trichuriasis - genetics</subject><subject>Trichuriasis - immunology</subject><subject>Trichuris - immunology</subject><subject>Trichuris muris</subject><issn>0031-1820</issn><issn>1469-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkd1rFDEUxYModlv9A3yRINi30Xwn81iLVkuhSBXEl-FuJrOmnY9t7gy4_70ZdnChUnzKw_ndk3vuIeQVZ-844_b9DWOScycY04w5W5onZMWVKQvHDX9KVrNczPoROUa8ZYwZacRzcsSNskJxuSL1GfUtIMYmehjj0NOhoSPgHdJmSHT8FSjucAxdFj3Fcap3MxG7buoDTQG3Q4-BThj7DW2m3s8e0NJN6IcueqQ1jPCCPGugxfByeU_I908fv51_Lq6uL76cn10VXnMxFsLV1pdOl1x7puqgmdLgVQg1NF5Is1Z16Zxi4EpgHEzJLGjllAKvzdoweUJO977bNNxPAceqi-hD20IfhgkrY412Vv0fFPlnq7jI4JsH4O0wpRwwM_nSQkruMsT3kE8DYgpNtU2xg7SrOKvmoqp_isozrxfjad2F-jCxNJOBtwsA6KFtEvQ-4oGzmpeC8cwVey7mln7_1SHd5bjS6spcfK3E5c3PD1L9qOZEclkWunWK9SYcIj2-7h_Zabgu</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>HEDELER, C.</creator><creator>PATON, N. W.</creator><creator>BEHNKE, J. M.</creator><creator>BRADLEY, J. E.</creator><creator>HAMSHERE, M. G.</creator><creator>ELSE, K. J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>A classification of tasks for the systematic study of immune response using functional genomics data</title><author>HEDELER, C. ; PATON, N. W. ; BEHNKE, J. M. ; BRADLEY, J. E. ; HAMSHERE, M. G. ; ELSE, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Allergy and Immunology - classification</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Data Collection - classification</topic><topic>Data Collection - methods</topic><topic>Data Collection - standards</topic><topic>Experimental data</topic><topic>Experiments</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>General aspects</topic><topic>General aspects and techniques. Study of several systematic groups. Models</topic><topic>Genomics - methods</topic><topic>Heligmosomoides polygyrus</topic><topic>Hypotheses</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Active - genetics</topic><topic>Immunization</topic><topic>intestinal nematode</topic><topic>Invertebrates</topic><topic>Mice</topic><topic>Nemathelminthia. Plathelmintha</topic><topic>Nematospiroides dubius - immunology</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Parasites</topic><topic>Pathogens</topic><topic>Statistics as Topic - classification</topic><topic>Statistics as Topic - methods</topic><topic>Statistics as Topic - standards</topic><topic>Strongylida Infections - genetics</topic><topic>Strongylida Infections - immunology</topic><topic>Studies</topic><topic>systematic immunological bioinformatics</topic><topic>Task Performance and Analysis</topic><topic>Trichuriasis - genetics</topic><topic>Trichuriasis - immunology</topic><topic>Trichuris - immunology</topic><topic>Trichuris muris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HEDELER, C.</creatorcontrib><creatorcontrib>PATON, N. W.</creatorcontrib><creatorcontrib>BEHNKE, J. M.</creatorcontrib><creatorcontrib>BRADLEY, J. E.</creatorcontrib><creatorcontrib>HAMSHERE, M. G.</creatorcontrib><creatorcontrib>ELSE, K. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HEDELER, C.</au><au>PATON, N. W.</au><au>BEHNKE, J. M.</au><au>BRADLEY, J. E.</au><au>HAMSHERE, M. G.</au><au>ELSE, K. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A classification of tasks for the systematic study of immune response using functional genomics data</atitle><jtitle>Parasitology</jtitle><addtitle>Parasitology</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>132</volume><issue>2</issue><spage>157</spage><epage>167</epage><pages>157-167</pages><issn>0031-1820</issn><eissn>1469-8161</eissn><coden>PARAAE</coden><abstract>A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>16472413</pmid><doi>10.1017/S0031182005008796</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-1820
ispartof Parasitology, 2006-02, Vol.132 (2), p.157-167
issn 0031-1820
1469-8161
language eng
recordid cdi_proquest_miscellaneous_67658740
source MEDLINE; Cambridge Journals
subjects Allergy and Immunology - classification
Animals
Biological and medical sciences
Classification
Data Collection - classification
Data Collection - methods
Data Collection - standards
Experimental data
Experiments
Fundamental and applied biological sciences. Psychology
Gene expression
General aspects
General aspects and techniques. Study of several systematic groups. Models
Genomics - methods
Heligmosomoides polygyrus
Hypotheses
Immune response
Immune system
Immunity, Active - genetics
Immunization
intestinal nematode
Invertebrates
Mice
Nemathelminthia. Plathelmintha
Nematospiroides dubius - immunology
Oligonucleotide Array Sequence Analysis - methods
Parasites
Pathogens
Statistics as Topic - classification
Statistics as Topic - methods
Statistics as Topic - standards
Strongylida Infections - genetics
Strongylida Infections - immunology
Studies
systematic immunological bioinformatics
Task Performance and Analysis
Trichuriasis - genetics
Trichuriasis - immunology
Trichuris - immunology
Trichuris muris
title A classification of tasks for the systematic study of immune response using functional genomics data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20classification%20of%20tasks%20for%20the%20systematic%20study%20of%20immune%20response%20using%20functional%20genomics%20data&rft.jtitle=Parasitology&rft.au=HEDELER,%20C.&rft.date=2006-02-01&rft.volume=132&rft.issue=2&rft.spage=157&rft.epage=167&rft.pages=157-167&rft.issn=0031-1820&rft.eissn=1469-8161&rft.coden=PARAAE&rft_id=info:doi/10.1017/S0031182005008796&rft_dat=%3Cproquest_cross%3E67658740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214623318&rft_id=info:pmid/16472413&rft_cupid=10_1017_S0031182005008796&rfr_iscdi=true