A classification of tasks for the systematic study of immune response using functional genomics data
A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune syste...
Gespeichert in:
Veröffentlicht in: | Parasitology 2006-02, Vol.132 (2), p.157-167 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Parasitology |
container_volume | 132 |
creator | HEDELER, C. PATON, N. W. BEHNKE, J. M. BRADLEY, J. E. HAMSHERE, M. G. ELSE, K. J. |
description | A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus. |
doi_str_mv | 10.1017/S0031182005008796 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67658740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0031182005008796</cupid><sourcerecordid>67658740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYModlv9A3yRINi30Xwn81iLVkuhSBXEl-FuJrOmnY9t7gy4_70ZdnChUnzKw_ndk3vuIeQVZ-844_b9DWOScycY04w5W5onZMWVKQvHDX9KVrNczPoROUa8ZYwZacRzcsSNskJxuSL1GfUtIMYmehjj0NOhoSPgHdJmSHT8FSjucAxdFj3Fcap3MxG7buoDTQG3Q4-BThj7DW2m3s8e0NJN6IcueqQ1jPCCPGugxfByeU_I908fv51_Lq6uL76cn10VXnMxFsLV1pdOl1x7puqgmdLgVQg1NF5Is1Z16Zxi4EpgHEzJLGjllAKvzdoweUJO977bNNxPAceqi-hD20IfhgkrY412Vv0fFPlnq7jI4JsH4O0wpRwwM_nSQkruMsT3kE8DYgpNtU2xg7SrOKvmoqp_isozrxfjad2F-jCxNJOBtwsA6KFtEvQ-4oGzmpeC8cwVey7mln7_1SHd5bjS6spcfK3E5c3PD1L9qOZEclkWunWK9SYcIj2-7h_Zabgu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214623318</pqid></control><display><type>article</type><title>A classification of tasks for the systematic study of immune response using functional genomics data</title><source>MEDLINE</source><source>Cambridge Journals</source><creator>HEDELER, C. ; PATON, N. W. ; BEHNKE, J. M. ; BRADLEY, J. E. ; HAMSHERE, M. G. ; ELSE, K. J.</creator><creatorcontrib>HEDELER, C. ; PATON, N. W. ; BEHNKE, J. M. ; BRADLEY, J. E. ; HAMSHERE, M. G. ; ELSE, K. J.</creatorcontrib><description>A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.</description><identifier>ISSN: 0031-1820</identifier><identifier>EISSN: 1469-8161</identifier><identifier>DOI: 10.1017/S0031182005008796</identifier><identifier>PMID: 16472413</identifier><identifier>CODEN: PARAAE</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Allergy and Immunology - classification ; Animals ; Biological and medical sciences ; Classification ; Data Collection - classification ; Data Collection - methods ; Data Collection - standards ; Experimental data ; Experiments ; Fundamental and applied biological sciences. Psychology ; Gene expression ; General aspects ; General aspects and techniques. Study of several systematic groups. Models ; Genomics - methods ; Heligmosomoides polygyrus ; Hypotheses ; Immune response ; Immune system ; Immunity, Active - genetics ; Immunization ; intestinal nematode ; Invertebrates ; Mice ; Nemathelminthia. Plathelmintha ; Nematospiroides dubius - immunology ; Oligonucleotide Array Sequence Analysis - methods ; Parasites ; Pathogens ; Statistics as Topic - classification ; Statistics as Topic - methods ; Statistics as Topic - standards ; Strongylida Infections - genetics ; Strongylida Infections - immunology ; Studies ; systematic immunological bioinformatics ; Task Performance and Analysis ; Trichuriasis - genetics ; Trichuriasis - immunology ; Trichuris - immunology ; Trichuris muris</subject><ispartof>Parasitology, 2006-02, Vol.132 (2), p.157-167</ispartof><rights>2005 Cambridge University Press</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Cambridge University Press Feb 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</citedby><cites>FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0031182005008796/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17519201$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16472413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HEDELER, C.</creatorcontrib><creatorcontrib>PATON, N. W.</creatorcontrib><creatorcontrib>BEHNKE, J. M.</creatorcontrib><creatorcontrib>BRADLEY, J. E.</creatorcontrib><creatorcontrib>HAMSHERE, M. G.</creatorcontrib><creatorcontrib>ELSE, K. J.</creatorcontrib><title>A classification of tasks for the systematic study of immune response using functional genomics data</title><title>Parasitology</title><addtitle>Parasitology</addtitle><description>A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.</description><subject>Allergy and Immunology - classification</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Data Collection - classification</subject><subject>Data Collection - methods</subject><subject>Data Collection - standards</subject><subject>Experimental data</subject><subject>Experiments</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>General aspects</subject><subject>General aspects and techniques. Study of several systematic groups. Models</subject><subject>Genomics - methods</subject><subject>Heligmosomoides polygyrus</subject><subject>Hypotheses</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Active - genetics</subject><subject>Immunization</subject><subject>intestinal nematode</subject><subject>Invertebrates</subject><subject>Mice</subject><subject>Nemathelminthia. Plathelmintha</subject><subject>Nematospiroides dubius - immunology</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Parasites</subject><subject>Pathogens</subject><subject>Statistics as Topic - classification</subject><subject>Statistics as Topic - methods</subject><subject>Statistics as Topic - standards</subject><subject>Strongylida Infections - genetics</subject><subject>Strongylida Infections - immunology</subject><subject>Studies</subject><subject>systematic immunological bioinformatics</subject><subject>Task Performance and Analysis</subject><subject>Trichuriasis - genetics</subject><subject>Trichuriasis - immunology</subject><subject>Trichuris - immunology</subject><subject>Trichuris muris</subject><issn>0031-1820</issn><issn>1469-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkd1rFDEUxYModlv9A3yRINi30Xwn81iLVkuhSBXEl-FuJrOmnY9t7gy4_70ZdnChUnzKw_ndk3vuIeQVZ-844_b9DWOScycY04w5W5onZMWVKQvHDX9KVrNczPoROUa8ZYwZacRzcsSNskJxuSL1GfUtIMYmehjj0NOhoSPgHdJmSHT8FSjucAxdFj3Fcap3MxG7buoDTQG3Q4-BThj7DW2m3s8e0NJN6IcueqQ1jPCCPGugxfByeU_I908fv51_Lq6uL76cn10VXnMxFsLV1pdOl1x7puqgmdLgVQg1NF5Is1Z16Zxi4EpgHEzJLGjllAKvzdoweUJO977bNNxPAceqi-hD20IfhgkrY412Vv0fFPlnq7jI4JsH4O0wpRwwM_nSQkruMsT3kE8DYgpNtU2xg7SrOKvmoqp_isozrxfjad2F-jCxNJOBtwsA6KFtEvQ-4oGzmpeC8cwVey7mln7_1SHd5bjS6spcfK3E5c3PD1L9qOZEclkWunWK9SYcIj2-7h_Zabgu</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>HEDELER, C.</creator><creator>PATON, N. W.</creator><creator>BEHNKE, J. M.</creator><creator>BRADLEY, J. E.</creator><creator>HAMSHERE, M. G.</creator><creator>ELSE, K. J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>A classification of tasks for the systematic study of immune response using functional genomics data</title><author>HEDELER, C. ; PATON, N. W. ; BEHNKE, J. M. ; BRADLEY, J. E. ; HAMSHERE, M. G. ; ELSE, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-28d7c985915c04de5045ac4eedafc236b4d98840a89a01a6907a54844ac56b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Allergy and Immunology - classification</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Data Collection - classification</topic><topic>Data Collection - methods</topic><topic>Data Collection - standards</topic><topic>Experimental data</topic><topic>Experiments</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>General aspects</topic><topic>General aspects and techniques. Study of several systematic groups. Models</topic><topic>Genomics - methods</topic><topic>Heligmosomoides polygyrus</topic><topic>Hypotheses</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Active - genetics</topic><topic>Immunization</topic><topic>intestinal nematode</topic><topic>Invertebrates</topic><topic>Mice</topic><topic>Nemathelminthia. Plathelmintha</topic><topic>Nematospiroides dubius - immunology</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Parasites</topic><topic>Pathogens</topic><topic>Statistics as Topic - classification</topic><topic>Statistics as Topic - methods</topic><topic>Statistics as Topic - standards</topic><topic>Strongylida Infections - genetics</topic><topic>Strongylida Infections - immunology</topic><topic>Studies</topic><topic>systematic immunological bioinformatics</topic><topic>Task Performance and Analysis</topic><topic>Trichuriasis - genetics</topic><topic>Trichuriasis - immunology</topic><topic>Trichuris - immunology</topic><topic>Trichuris muris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HEDELER, C.</creatorcontrib><creatorcontrib>PATON, N. W.</creatorcontrib><creatorcontrib>BEHNKE, J. M.</creatorcontrib><creatorcontrib>BRADLEY, J. E.</creatorcontrib><creatorcontrib>HAMSHERE, M. G.</creatorcontrib><creatorcontrib>ELSE, K. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HEDELER, C.</au><au>PATON, N. W.</au><au>BEHNKE, J. M.</au><au>BRADLEY, J. E.</au><au>HAMSHERE, M. G.</au><au>ELSE, K. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A classification of tasks for the systematic study of immune response using functional genomics data</atitle><jtitle>Parasitology</jtitle><addtitle>Parasitology</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>132</volume><issue>2</issue><spage>157</spage><epage>167</epage><pages>157-167</pages><issn>0031-1820</issn><eissn>1469-8161</eissn><coden>PARAAE</coden><abstract>A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>16472413</pmid><doi>10.1017/S0031182005008796</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-1820 |
ispartof | Parasitology, 2006-02, Vol.132 (2), p.157-167 |
issn | 0031-1820 1469-8161 |
language | eng |
recordid | cdi_proquest_miscellaneous_67658740 |
source | MEDLINE; Cambridge Journals |
subjects | Allergy and Immunology - classification Animals Biological and medical sciences Classification Data Collection - classification Data Collection - methods Data Collection - standards Experimental data Experiments Fundamental and applied biological sciences. Psychology Gene expression General aspects General aspects and techniques. Study of several systematic groups. Models Genomics - methods Heligmosomoides polygyrus Hypotheses Immune response Immune system Immunity, Active - genetics Immunization intestinal nematode Invertebrates Mice Nemathelminthia. Plathelmintha Nematospiroides dubius - immunology Oligonucleotide Array Sequence Analysis - methods Parasites Pathogens Statistics as Topic - classification Statistics as Topic - methods Statistics as Topic - standards Strongylida Infections - genetics Strongylida Infections - immunology Studies systematic immunological bioinformatics Task Performance and Analysis Trichuriasis - genetics Trichuriasis - immunology Trichuris - immunology Trichuris muris |
title | A classification of tasks for the systematic study of immune response using functional genomics data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20classification%20of%20tasks%20for%20the%20systematic%20study%20of%20immune%20response%20using%20functional%20genomics%20data&rft.jtitle=Parasitology&rft.au=HEDELER,%20C.&rft.date=2006-02-01&rft.volume=132&rft.issue=2&rft.spage=157&rft.epage=167&rft.pages=157-167&rft.issn=0031-1820&rft.eissn=1469-8161&rft.coden=PARAAE&rft_id=info:doi/10.1017/S0031182005008796&rft_dat=%3Cproquest_cross%3E67658740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214623318&rft_id=info:pmid/16472413&rft_cupid=10_1017_S0031182005008796&rfr_iscdi=true |