The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction
A combination of experimental and computational approaches was employed to identify introns with noncanonical GC-AG splice sites (GC-AG introns) within euascomycete genomes. Evaluation of 2335 cDNA-confirmed introns from Neurospora crassa revealed 27 such introns (1.2%). A similar frequency (1.0%) o...
Gespeichert in:
Veröffentlicht in: | Genomics (San Diego, Calif.) Calif.), 2006-03, Vol.87 (3), p.338-347 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 3 |
container_start_page | 338 |
container_title | Genomics (San Diego, Calif.) |
container_volume | 87 |
creator | Rep, Martijn Duyvesteijn, Roselinde G.E. Gale, Liane Usgaard, Thomas Cornelissen, Ben J.C. Ma, Li-Jun Ward, Todd J. |
description | A combination of experimental and computational approaches was employed to identify introns with noncanonical GC-AG splice sites (GC-AG introns) within euascomycete genomes. Evaluation of 2335 cDNA-confirmed introns from
Neurospora crassa revealed 27 such introns (1.2%). A similar frequency (1.0%) of GC-AG introns was identified in
Fusarium graminearum, in which 3 of 292 cDNA-confirmed introns contained GC-AG splice sites. Computational analyses of the
N. crassa genome using a GC-AG intron consensus sequence identified an additional 20 probable GC-AG introns in this fungus. For 8 of the 47 GC-AG introns identified in
N. crassa a GC donor site is also present in a homolog from
Magnaporthe grisea, F. graminearum, or
Aspergillus nidulans. In most cases, however, homologs in these fungi contain a GT-AG intron or no intron at the corresponding position. These findings have important implications for fungal genome annotation, as the automated annotations of euascomycete genomes incorrectly identified intron boundaries for all of the confirmed and probable GC-AG introns reported here. |
doi_str_mv | 10.1016/j.ygeno.2005.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67653901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754305003356</els_id><sourcerecordid>67653901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-68cbc8bbf5ff7cb688aacd15334f5ec48020636d53b42424dcb5b8c6871cc6073</originalsourceid><addsrcrecordid>eNqFklGL1DAQx4so3nr6CQTNi761TtomzQo-HIuuwqEP3j2HNJ3cZWmbmrTCfh6_qNPbhXtTAhnI_OafyfyTZa85FBy4_HAojnc4hqIEEAXnBfD6SbbhoLa5krV8mm1AKZU3oq4ushcpHQBgW6nyeXbBZQ2yKetN9ufmHtkUMeFokQXH9rv8as_8OMcwJorsOy4xpClEw2w0KRlmxo6F-R4jw8UkG4ajxRkT62iPgx-xYy6GgTjTHxMlSJaoqac8W1seMH1kng68NbNf73EhMrPMYTAzVRPz0FTn7Zp-mT1zpk_46hwvs9svn292X_PrH_tvu6vr3NZ1OedS2daqtnXCuca2UiljbMdFVdVOoK0VlCAr2YmqrUtanW1Fq6xUDbdWQlNdZu9PulMMvxZMsx58stj3ZsSwJC0bKaot8P-CJTSlarZAYHUCLY0wRXR6in4w8ag56NVEfdAPJurVRM25JhOp6s1ZfmkH7B5rzq4R8O4M0PhN76IZrU-PXCME5yCIe3vinAna3EVibn-W9ADgIOW2KYn4dCKQ5vrbY9TJ-vUrdD6inXUX_D9b_Qsj58hx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20728790</pqid></control><display><type>article</type><title>The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rep, Martijn ; Duyvesteijn, Roselinde G.E. ; Gale, Liane ; Usgaard, Thomas ; Cornelissen, Ben J.C. ; Ma, Li-Jun ; Ward, Todd J.</creator><creatorcontrib>Rep, Martijn ; Duyvesteijn, Roselinde G.E. ; Gale, Liane ; Usgaard, Thomas ; Cornelissen, Ben J.C. ; Ma, Li-Jun ; Ward, Todd J.</creatorcontrib><description>A combination of experimental and computational approaches was employed to identify introns with noncanonical GC-AG splice sites (GC-AG introns) within euascomycete genomes. Evaluation of 2335 cDNA-confirmed introns from
Neurospora crassa revealed 27 such introns (1.2%). A similar frequency (1.0%) of GC-AG introns was identified in
Fusarium graminearum, in which 3 of 292 cDNA-confirmed introns contained GC-AG splice sites. Computational analyses of the
N. crassa genome using a GC-AG intron consensus sequence identified an additional 20 probable GC-AG introns in this fungus. For 8 of the 47 GC-AG introns identified in
N. crassa a GC donor site is also present in a homolog from
Magnaporthe grisea, F. graminearum, or
Aspergillus nidulans. In most cases, however, homologs in these fungi contain a GT-AG intron or no intron at the corresponding position. These findings have important implications for fungal genome annotation, as the automated annotations of euascomycete genomes incorrectly identified intron boundaries for all of the confirmed and probable GC-AG introns reported here.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2005.11.014</identifier><identifier>PMID: 16406724</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Alternative Splicing - genetics ; Aspergillus nidulans ; Aspergillus nidulellus ; Base Sequence ; bioinformatics ; Biological and medical sciences ; complementary DNA ; Computational Biology - methods ; Databases, Nucleic Acid ; Donor splice site ; donor splice sites ; Fundamental and applied biological sciences. Psychology ; Fungal genomes ; Fusarium - genetics ; Fusarium graminearum ; GC-AG introns ; genes ; Genes, Fungal - genetics ; Genes. Genome ; Genetics of eukaryotes. Biological and molecular evolution ; genome ; Genome, Fungal ; genomics ; Gibberella zeae ; introns ; Introns - genetics ; Magnaporthe grisea ; Molecular and cellular biology ; Molecular genetics ; Neurospora crassa ; Neurospora crassa - genetics ; Noncanonical introns ; nucleotide sequences ; prediction</subject><ispartof>Genomics (San Diego, Calif.), 2006-03, Vol.87 (3), p.338-347</ispartof><rights>2005 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-68cbc8bbf5ff7cb688aacd15334f5ec48020636d53b42424dcb5b8c6871cc6073</citedby><cites>FETCH-LOGICAL-c442t-68cbc8bbf5ff7cb688aacd15334f5ec48020636d53b42424dcb5b8c6871cc6073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888754305003356$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17551105$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16406724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rep, Martijn</creatorcontrib><creatorcontrib>Duyvesteijn, Roselinde G.E.</creatorcontrib><creatorcontrib>Gale, Liane</creatorcontrib><creatorcontrib>Usgaard, Thomas</creatorcontrib><creatorcontrib>Cornelissen, Ben J.C.</creatorcontrib><creatorcontrib>Ma, Li-Jun</creatorcontrib><creatorcontrib>Ward, Todd J.</creatorcontrib><title>The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>A combination of experimental and computational approaches was employed to identify introns with noncanonical GC-AG splice sites (GC-AG introns) within euascomycete genomes. Evaluation of 2335 cDNA-confirmed introns from
Neurospora crassa revealed 27 such introns (1.2%). A similar frequency (1.0%) of GC-AG introns was identified in
Fusarium graminearum, in which 3 of 292 cDNA-confirmed introns contained GC-AG splice sites. Computational analyses of the
N. crassa genome using a GC-AG intron consensus sequence identified an additional 20 probable GC-AG introns in this fungus. For 8 of the 47 GC-AG introns identified in
N. crassa a GC donor site is also present in a homolog from
Magnaporthe grisea, F. graminearum, or
Aspergillus nidulans. In most cases, however, homologs in these fungi contain a GT-AG intron or no intron at the corresponding position. These findings have important implications for fungal genome annotation, as the automated annotations of euascomycete genomes incorrectly identified intron boundaries for all of the confirmed and probable GC-AG introns reported here.</description><subject>Alternative Splicing - genetics</subject><subject>Aspergillus nidulans</subject><subject>Aspergillus nidulellus</subject><subject>Base Sequence</subject><subject>bioinformatics</subject><subject>Biological and medical sciences</subject><subject>complementary DNA</subject><subject>Computational Biology - methods</subject><subject>Databases, Nucleic Acid</subject><subject>Donor splice site</subject><subject>donor splice sites</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal genomes</subject><subject>Fusarium - genetics</subject><subject>Fusarium graminearum</subject><subject>GC-AG introns</subject><subject>genes</subject><subject>Genes, Fungal - genetics</subject><subject>Genes. Genome</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>genome</subject><subject>Genome, Fungal</subject><subject>genomics</subject><subject>Gibberella zeae</subject><subject>introns</subject><subject>Introns - genetics</subject><subject>Magnaporthe grisea</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - genetics</subject><subject>Noncanonical introns</subject><subject>nucleotide sequences</subject><subject>prediction</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFklGL1DAQx4so3nr6CQTNi761TtomzQo-HIuuwqEP3j2HNJ3cZWmbmrTCfh6_qNPbhXtTAhnI_OafyfyTZa85FBy4_HAojnc4hqIEEAXnBfD6SbbhoLa5krV8mm1AKZU3oq4ushcpHQBgW6nyeXbBZQ2yKetN9ufmHtkUMeFokQXH9rv8as_8OMcwJorsOy4xpClEw2w0KRlmxo6F-R4jw8UkG4ajxRkT62iPgx-xYy6GgTjTHxMlSJaoqac8W1seMH1kng68NbNf73EhMrPMYTAzVRPz0FTn7Zp-mT1zpk_46hwvs9svn292X_PrH_tvu6vr3NZ1OedS2daqtnXCuca2UiljbMdFVdVOoK0VlCAr2YmqrUtanW1Fq6xUDbdWQlNdZu9PulMMvxZMsx58stj3ZsSwJC0bKaot8P-CJTSlarZAYHUCLY0wRXR6in4w8ag56NVEfdAPJurVRM25JhOp6s1ZfmkH7B5rzq4R8O4M0PhN76IZrU-PXCME5yCIe3vinAna3EVibn-W9ADgIOW2KYn4dCKQ5vrbY9TJ-vUrdD6inXUX_D9b_Qsj58hx</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Rep, Martijn</creator><creator>Duyvesteijn, Roselinde G.E.</creator><creator>Gale, Liane</creator><creator>Usgaard, Thomas</creator><creator>Cornelissen, Ben J.C.</creator><creator>Ma, Li-Jun</creator><creator>Ward, Todd J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction</title><author>Rep, Martijn ; Duyvesteijn, Roselinde G.E. ; Gale, Liane ; Usgaard, Thomas ; Cornelissen, Ben J.C. ; Ma, Li-Jun ; Ward, Todd J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-68cbc8bbf5ff7cb688aacd15334f5ec48020636d53b42424dcb5b8c6871cc6073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alternative Splicing - genetics</topic><topic>Aspergillus nidulans</topic><topic>Aspergillus nidulellus</topic><topic>Base Sequence</topic><topic>bioinformatics</topic><topic>Biological and medical sciences</topic><topic>complementary DNA</topic><topic>Computational Biology - methods</topic><topic>Databases, Nucleic Acid</topic><topic>Donor splice site</topic><topic>donor splice sites</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal genomes</topic><topic>Fusarium - genetics</topic><topic>Fusarium graminearum</topic><topic>GC-AG introns</topic><topic>genes</topic><topic>Genes, Fungal - genetics</topic><topic>Genes. Genome</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>genome</topic><topic>Genome, Fungal</topic><topic>genomics</topic><topic>Gibberella zeae</topic><topic>introns</topic><topic>Introns - genetics</topic><topic>Magnaporthe grisea</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - genetics</topic><topic>Noncanonical introns</topic><topic>nucleotide sequences</topic><topic>prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rep, Martijn</creatorcontrib><creatorcontrib>Duyvesteijn, Roselinde G.E.</creatorcontrib><creatorcontrib>Gale, Liane</creatorcontrib><creatorcontrib>Usgaard, Thomas</creatorcontrib><creatorcontrib>Cornelissen, Ben J.C.</creatorcontrib><creatorcontrib>Ma, Li-Jun</creatorcontrib><creatorcontrib>Ward, Todd J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rep, Martijn</au><au>Duyvesteijn, Roselinde G.E.</au><au>Gale, Liane</au><au>Usgaard, Thomas</au><au>Cornelissen, Ben J.C.</au><au>Ma, Li-Jun</au><au>Ward, Todd J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>87</volume><issue>3</issue><spage>338</spage><epage>347</epage><pages>338-347</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>A combination of experimental and computational approaches was employed to identify introns with noncanonical GC-AG splice sites (GC-AG introns) within euascomycete genomes. Evaluation of 2335 cDNA-confirmed introns from
Neurospora crassa revealed 27 such introns (1.2%). A similar frequency (1.0%) of GC-AG introns was identified in
Fusarium graminearum, in which 3 of 292 cDNA-confirmed introns contained GC-AG splice sites. Computational analyses of the
N. crassa genome using a GC-AG intron consensus sequence identified an additional 20 probable GC-AG introns in this fungus. For 8 of the 47 GC-AG introns identified in
N. crassa a GC donor site is also present in a homolog from
Magnaporthe grisea, F. graminearum, or
Aspergillus nidulans. In most cases, however, homologs in these fungi contain a GT-AG intron or no intron at the corresponding position. These findings have important implications for fungal genome annotation, as the automated annotations of euascomycete genomes incorrectly identified intron boundaries for all of the confirmed and probable GC-AG introns reported here.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>16406724</pmid><doi>10.1016/j.ygeno.2005.11.014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7543 |
ispartof | Genomics (San Diego, Calif.), 2006-03, Vol.87 (3), p.338-347 |
issn | 0888-7543 1089-8646 |
language | eng |
recordid | cdi_proquest_miscellaneous_67653901 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alternative Splicing - genetics Aspergillus nidulans Aspergillus nidulellus Base Sequence bioinformatics Biological and medical sciences complementary DNA Computational Biology - methods Databases, Nucleic Acid Donor splice site donor splice sites Fundamental and applied biological sciences. Psychology Fungal genomes Fusarium - genetics Fusarium graminearum GC-AG introns genes Genes, Fungal - genetics Genes. Genome Genetics of eukaryotes. Biological and molecular evolution genome Genome, Fungal genomics Gibberella zeae introns Introns - genetics Magnaporthe grisea Molecular and cellular biology Molecular genetics Neurospora crassa Neurospora crassa - genetics Noncanonical introns nucleotide sequences prediction |
title | The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20presence%20of%20GC-AG%20introns%20in%20Neurospora%20crassa%20and%20other%20euascomycetes%20determined%20from%20analyses%20of%20complete%20genomes:%20implications%20for%20automated%20gene%20prediction&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Rep,%20Martijn&rft.date=2006-03-01&rft.volume=87&rft.issue=3&rft.spage=338&rft.epage=347&rft.pages=338-347&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2005.11.014&rft_dat=%3Cproquest_cross%3E67653901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20728790&rft_id=info:pmid/16406724&rft_els_id=S0888754305003356&rfr_iscdi=true |