An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA
Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its a...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2009-09, Vol.461 (7261), p.230-235 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 7261 |
container_start_page | 230 |
container_title | Nature (London) |
container_volume | 461 |
creator | Yasukawa, Mami Lassmann, Timo Possemato, Richard Hahn, William C Maida, Yoshiko Hayashizaki, Yoshihide Kasim, Vivi Okamoto, Naoko Masutomi, Kenkichi Furuuchi, Miho |
description | Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its ability to elongate telomeres. Here we show that TERT interacts with the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), a gene that is mutated in the inherited pleiotropic syndrome cartilage–hair hypoplasia. Human TERT and
RMRP
form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNA in a Dicer (also known as DICER1)-dependent manner. These observations identify a mammalian RdRP composed of TERT in complex with
RMRP
.
TERT beyond the telomere
Some types of RNA-mediated silencing involve the production of secondary siRNAs, made by converting single-stranded RNA into double-stranded RNA. This is done by the action of an RNA-dependent RNA polymerase (RdRP). Maida
et al
. now show that TERT, the catalytic subunit of telomerase, can generate dsRNA from the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), previously shown to be mutated in cartilage–hair hypoplasia, an inherited form of dwarfism. The resulting dsRNA can be processed into siRNAs by the endoribonuclease Dicer. This is the first report of a mammalian RdRP activity. Evidence is accumulating to suggest that TERT contributes to cell physiology independently of its ability to elongate telomeres, and this new work points to one of the mechanisms involved.
Accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) has a role in cell physiology independent to that of elongating telomeres. Here it is shown to interact with
RMRP
, a gene that is mutated in the syndrome cartilage–hair hypoplasia, to form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNAs. |
doi_str_mv | 10.1038/nature08283 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67644517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A208276408</galeid><sourcerecordid>A208276408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c649t-5b029ba326ec3cad4155c0d177334a3b4ecd4bd4cd20f6d6bbc61281dbdc6c0c3</originalsourceid><addsrcrecordid>eNqF0tFr1DAcB_AgE3dOn_Yu3cCBaGeS5tLck5Rj6mBOqSd7DGny69nRpl3SgvffL0eP252cSB9Ck09_4fftD6FTgi8JTsRHq_rBARZUJM_QhLCUx4yL9AhNMKYixiLhx-il9_cY4ylJ2Qt0TGYpJkTQCfqU2Si_zWIDHVgDtl-_RV1brxpwykNUtq4BExWraHGVLyJlTdT_hij_lv9Y01foealqD6836wn69flqMf8a33z_cj3PbmLN2ayPpwWms0IllINOtDKMTKcaG5KmScJUUjDQhhWGaUNxyQ0vCs0JFcQURnONdXKCLsa6nWsfBvC9bCqvoa6VhXbwkqecsdDdfyENfc8IYQGe_wXv28HZ0ISkmLGUUIoDike0VDXIypZt75Regg3h1K2FsgrbGQ3hh_tD0tuie1531YPcRZcHUHgMNJU-WPXd3gfB9PCnX6rBe3n9M9-37_9ts8Xd_Pag1q713kEpO1c1yq0kwXI9XXJnuoJ-s4lsKMJQPNnNOAXwdgOU16ounbK68ltHiRCCifVP-jA6H47sEtxT9ofvPRv5uLmtt2seAek27AE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204471220</pqid></control><display><type>article</type><title>An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Yasukawa, Mami ; Lassmann, Timo ; Possemato, Richard ; Hahn, William C ; Maida, Yoshiko ; Hayashizaki, Yoshihide ; Kasim, Vivi ; Okamoto, Naoko ; Masutomi, Kenkichi ; Furuuchi, Miho</creator><creatorcontrib>Yasukawa, Mami ; Lassmann, Timo ; Possemato, Richard ; Hahn, William C ; Maida, Yoshiko ; Hayashizaki, Yoshihide ; Kasim, Vivi ; Okamoto, Naoko ; Masutomi, Kenkichi ; Furuuchi, Miho</creatorcontrib><description>Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its ability to elongate telomeres. Here we show that TERT interacts with the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), a gene that is mutated in the inherited pleiotropic syndrome cartilage–hair hypoplasia. Human TERT and
RMRP
form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNA in a Dicer (also known as DICER1)-dependent manner. These observations identify a mammalian RdRP composed of TERT in complex with
RMRP
.
TERT beyond the telomere
Some types of RNA-mediated silencing involve the production of secondary siRNAs, made by converting single-stranded RNA into double-stranded RNA. This is done by the action of an RNA-dependent RNA polymerase (RdRP). Maida
et al
. now show that TERT, the catalytic subunit of telomerase, can generate dsRNA from the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), previously shown to be mutated in cartilage–hair hypoplasia, an inherited form of dwarfism. The resulting dsRNA can be processed into siRNAs by the endoribonuclease Dicer. This is the first report of a mammalian RdRP activity. Evidence is accumulating to suggest that TERT contributes to cell physiology independently of its ability to elongate telomeres, and this new work points to one of the mechanisms involved.
Accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) has a role in cell physiology independent to that of elongating telomeres. Here it is shown to interact with
RMRP
, a gene that is mutated in the syndrome cartilage–hair hypoplasia, to form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNAs.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature08283</identifier><identifier>PMID: 19701182</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biological and medical sciences ; Cell Line ; Diseases of the osteoarticular system ; E coli ; Endoribonucleases - genetics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation ; HeLa Cells ; Humanities and Social Sciences ; Humans ; Malformations and congenital and or hereditary diseases involving bones. Joint deformations ; Medical sciences ; Molecular and cellular biology ; Molecular genetics ; multidisciplinary ; Protein Binding ; Reverse transcriptase ; Ribonuclease ; Ribonuclease III - deficiency ; Ribonuclease III - genetics ; Ribonuclease III - metabolism ; Ribonucleic acid ; Ribonucleoproteins - genetics ; Ribonucleoproteins - metabolism ; RNA ; RNA processing ; RNA Replicase - chemistry ; RNA Replicase - metabolism ; RNA, Double-Stranded - biosynthesis ; RNA, Double-Stranded - genetics ; RNA, Double-Stranded - metabolism ; RNA, Long Noncoding ; RNA, Small Interfering - biosynthesis ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; RNA, Untranslated - genetics ; RNA, Untranslated - metabolism ; Science ; Science (multidisciplinary) ; Stem cells ; Telomerase ; Telomerase - genetics ; Telomerase - metabolism ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Nature (London), 2009-09, Vol.461 (7261), p.230-235</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2009</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 10, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c649t-5b029ba326ec3cad4155c0d177334a3b4ecd4bd4cd20f6d6bbc61281dbdc6c0c3</citedby><cites>FETCH-LOGICAL-c649t-5b029ba326ec3cad4155c0d177334a3b4ecd4bd4cd20f6d6bbc61281dbdc6c0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21888487$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19701182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yasukawa, Mami</creatorcontrib><creatorcontrib>Lassmann, Timo</creatorcontrib><creatorcontrib>Possemato, Richard</creatorcontrib><creatorcontrib>Hahn, William C</creatorcontrib><creatorcontrib>Maida, Yoshiko</creatorcontrib><creatorcontrib>Hayashizaki, Yoshihide</creatorcontrib><creatorcontrib>Kasim, Vivi</creatorcontrib><creatorcontrib>Okamoto, Naoko</creatorcontrib><creatorcontrib>Masutomi, Kenkichi</creatorcontrib><creatorcontrib>Furuuchi, Miho</creatorcontrib><title>An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its ability to elongate telomeres. Here we show that TERT interacts with the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), a gene that is mutated in the inherited pleiotropic syndrome cartilage–hair hypoplasia. Human TERT and
RMRP
form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNA in a Dicer (also known as DICER1)-dependent manner. These observations identify a mammalian RdRP composed of TERT in complex with
RMRP
.
TERT beyond the telomere
Some types of RNA-mediated silencing involve the production of secondary siRNAs, made by converting single-stranded RNA into double-stranded RNA. This is done by the action of an RNA-dependent RNA polymerase (RdRP). Maida
et al
. now show that TERT, the catalytic subunit of telomerase, can generate dsRNA from the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), previously shown to be mutated in cartilage–hair hypoplasia, an inherited form of dwarfism. The resulting dsRNA can be processed into siRNAs by the endoribonuclease Dicer. This is the first report of a mammalian RdRP activity. Evidence is accumulating to suggest that TERT contributes to cell physiology independently of its ability to elongate telomeres, and this new work points to one of the mechanisms involved.
Accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) has a role in cell physiology independent to that of elongating telomeres. Here it is shown to interact with
RMRP
, a gene that is mutated in the syndrome cartilage–hair hypoplasia, to form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNAs.</description><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Diseases of the osteoarticular system</subject><subject>E coli</subject><subject>Endoribonucleases - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>HeLa Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Malformations and congenital and or hereditary diseases involving bones. Joint deformations</subject><subject>Medical sciences</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>multidisciplinary</subject><subject>Protein Binding</subject><subject>Reverse transcriptase</subject><subject>Ribonuclease</subject><subject>Ribonuclease III - deficiency</subject><subject>Ribonuclease III - genetics</subject><subject>Ribonuclease III - metabolism</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins - genetics</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA processing</subject><subject>RNA Replicase - chemistry</subject><subject>RNA Replicase - metabolism</subject><subject>RNA, Double-Stranded - biosynthesis</subject><subject>RNA, Double-Stranded - genetics</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Small Interfering - biosynthesis</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA, Untranslated - genetics</subject><subject>RNA, Untranslated - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Telomerase</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0tFr1DAcB_AgE3dOn_Yu3cCBaGeS5tLck5Rj6mBOqSd7DGny69nRpl3SgvffL0eP252cSB9Ck09_4fftD6FTgi8JTsRHq_rBARZUJM_QhLCUx4yL9AhNMKYixiLhx-il9_cY4ylJ2Qt0TGYpJkTQCfqU2Si_zWIDHVgDtl-_RV1brxpwykNUtq4BExWraHGVLyJlTdT_hij_lv9Y01foealqD6836wn69flqMf8a33z_cj3PbmLN2ayPpwWms0IllINOtDKMTKcaG5KmScJUUjDQhhWGaUNxyQ0vCs0JFcQURnONdXKCLsa6nWsfBvC9bCqvoa6VhXbwkqecsdDdfyENfc8IYQGe_wXv28HZ0ISkmLGUUIoDike0VDXIypZt75Regg3h1K2FsgrbGQ3hh_tD0tuie1531YPcRZcHUHgMNJU-WPXd3gfB9PCnX6rBe3n9M9-37_9ts8Xd_Pag1q713kEpO1c1yq0kwXI9XXJnuoJ-s4lsKMJQPNnNOAXwdgOU16ounbK68ltHiRCCifVP-jA6H47sEtxT9ofvPRv5uLmtt2seAek27AE</recordid><startdate>20090910</startdate><enddate>20090910</enddate><creator>Yasukawa, Mami</creator><creator>Lassmann, Timo</creator><creator>Possemato, Richard</creator><creator>Hahn, William C</creator><creator>Maida, Yoshiko</creator><creator>Hayashizaki, Yoshihide</creator><creator>Kasim, Vivi</creator><creator>Okamoto, Naoko</creator><creator>Masutomi, Kenkichi</creator><creator>Furuuchi, Miho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20090910</creationdate><title>An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA</title><author>Yasukawa, Mami ; Lassmann, Timo ; Possemato, Richard ; Hahn, William C ; Maida, Yoshiko ; Hayashizaki, Yoshihide ; Kasim, Vivi ; Okamoto, Naoko ; Masutomi, Kenkichi ; Furuuchi, Miho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c649t-5b029ba326ec3cad4155c0d177334a3b4ecd4bd4cd20f6d6bbc61281dbdc6c0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Diseases of the osteoarticular system</topic><topic>E coli</topic><topic>Endoribonucleases - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>HeLa Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Malformations and congenital and or hereditary diseases involving bones. Joint deformations</topic><topic>Medical sciences</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>multidisciplinary</topic><topic>Protein Binding</topic><topic>Reverse transcriptase</topic><topic>Ribonuclease</topic><topic>Ribonuclease III - deficiency</topic><topic>Ribonuclease III - genetics</topic><topic>Ribonuclease III - metabolism</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins - genetics</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA processing</topic><topic>RNA Replicase - chemistry</topic><topic>RNA Replicase - metabolism</topic><topic>RNA, Double-Stranded - biosynthesis</topic><topic>RNA, Double-Stranded - genetics</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Small Interfering - biosynthesis</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA, Untranslated - genetics</topic><topic>RNA, Untranslated - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Telomerase</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasukawa, Mami</creatorcontrib><creatorcontrib>Lassmann, Timo</creatorcontrib><creatorcontrib>Possemato, Richard</creatorcontrib><creatorcontrib>Hahn, William C</creatorcontrib><creatorcontrib>Maida, Yoshiko</creatorcontrib><creatorcontrib>Hayashizaki, Yoshihide</creatorcontrib><creatorcontrib>Kasim, Vivi</creatorcontrib><creatorcontrib>Okamoto, Naoko</creatorcontrib><creatorcontrib>Masutomi, Kenkichi</creatorcontrib><creatorcontrib>Furuuchi, Miho</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasukawa, Mami</au><au>Lassmann, Timo</au><au>Possemato, Richard</au><au>Hahn, William C</au><au>Maida, Yoshiko</au><au>Hayashizaki, Yoshihide</au><au>Kasim, Vivi</au><au>Okamoto, Naoko</au><au>Masutomi, Kenkichi</au><au>Furuuchi, Miho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2009-09-10</date><risdate>2009</risdate><volume>461</volume><issue>7261</issue><spage>230</spage><epage>235</epage><pages>230-235</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its ability to elongate telomeres. Here we show that TERT interacts with the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), a gene that is mutated in the inherited pleiotropic syndrome cartilage–hair hypoplasia. Human TERT and
RMRP
form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNA in a Dicer (also known as DICER1)-dependent manner. These observations identify a mammalian RdRP composed of TERT in complex with
RMRP
.
TERT beyond the telomere
Some types of RNA-mediated silencing involve the production of secondary siRNAs, made by converting single-stranded RNA into double-stranded RNA. This is done by the action of an RNA-dependent RNA polymerase (RdRP). Maida
et al
. now show that TERT, the catalytic subunit of telomerase, can generate dsRNA from the RNA component of mitochondrial RNA processing endoribonuclease (
RMRP
), previously shown to be mutated in cartilage–hair hypoplasia, an inherited form of dwarfism. The resulting dsRNA can be processed into siRNAs by the endoribonuclease Dicer. This is the first report of a mammalian RdRP activity. Evidence is accumulating to suggest that TERT contributes to cell physiology independently of its ability to elongate telomeres, and this new work points to one of the mechanisms involved.
Accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) has a role in cell physiology independent to that of elongating telomeres. Here it is shown to interact with
RMRP
, a gene that is mutated in the syndrome cartilage–hair hypoplasia, to form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNAs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19701182</pmid><doi>10.1038/nature08283</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2009-09, Vol.461 (7261), p.230-235 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_67644517 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | Biological and medical sciences Cell Line Diseases of the osteoarticular system E coli Endoribonucleases - genetics Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation HeLa Cells Humanities and Social Sciences Humans Malformations and congenital and or hereditary diseases involving bones. Joint deformations Medical sciences Molecular and cellular biology Molecular genetics multidisciplinary Protein Binding Reverse transcriptase Ribonuclease Ribonuclease III - deficiency Ribonuclease III - genetics Ribonuclease III - metabolism Ribonucleic acid Ribonucleoproteins - genetics Ribonucleoproteins - metabolism RNA RNA processing RNA Replicase - chemistry RNA Replicase - metabolism RNA, Double-Stranded - biosynthesis RNA, Double-Stranded - genetics RNA, Double-Stranded - metabolism RNA, Long Noncoding RNA, Small Interfering - biosynthesis RNA, Small Interfering - genetics RNA, Small Interfering - metabolism RNA, Untranslated - genetics RNA, Untranslated - metabolism Science Science (multidisciplinary) Stem cells Telomerase Telomerase - genetics Telomerase - metabolism Transcription. Transcription factor. Splicing. Rna processing |
title | An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20RNA-dependent%20RNA%20polymerase%20formed%20by%20TERT%20and%20the%20RMRP%20RNA&rft.jtitle=Nature%20(London)&rft.au=Yasukawa,%20Mami&rft.date=2009-09-10&rft.volume=461&rft.issue=7261&rft.spage=230&rft.epage=235&rft.pages=230-235&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature08283&rft_dat=%3Cgale_proqu%3EA208276408%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204471220&rft_id=info:pmid/19701182&rft_galeid=A208276408&rfr_iscdi=true |