A note on variational Bayesian factor analysis
Existing works on variational bayesian (VB) treatment for factor analysis (FA) model such as [Ghahramani, Z., & Beal, M. (2000). Variational inference for Bayesian mixture of factor analysers. In Advances in neural information proceeding systems. Cambridge, MA: MIT Press; Nielsen, F. B. (2004)....
Gespeichert in:
Veröffentlicht in: | Neural networks 2009-09, Vol.22 (7), p.988-997 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existing works on variational bayesian (VB) treatment for factor analysis (FA) model such as [Ghahramani, Z., & Beal, M. (2000). Variational inference for Bayesian mixture of factor analysers. In
Advances in neural information proceeding systems. Cambridge, MA: MIT Press; Nielsen, F. B. (2004). Variational approach to factor analysis and related models.
Master’s thesis, The Institute of Informatics and Mathematical Modelling, Technical University of Denmark.] are found theoretically and empirically to suffer two problems: ① penalize the model more heavily than BIC and ② perform unsatisfactorily in low noise cases as redundant factors can not be effectively suppressed. A novel VB treatment is proposed in this paper to resolve the two problems and a simulation study is conducted to testify its improved performance over existing treatments. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2008.11.002 |