A note on variational Bayesian factor analysis

Existing works on variational bayesian (VB) treatment for factor analysis (FA) model such as [Ghahramani, Z., & Beal, M. (2000). Variational inference for Bayesian mixture of factor analysers. In Advances in neural information proceeding systems. Cambridge, MA: MIT Press; Nielsen, F. B. (2004)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2009-09, Vol.22 (7), p.988-997
Hauptverfasser: Zhao, Jian-hua, Yu, Philip L.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existing works on variational bayesian (VB) treatment for factor analysis (FA) model such as [Ghahramani, Z., & Beal, M. (2000). Variational inference for Bayesian mixture of factor analysers. In Advances in neural information proceeding systems. Cambridge, MA: MIT Press; Nielsen, F. B. (2004). Variational approach to factor analysis and related models. Master’s thesis, The Institute of Informatics and Mathematical Modelling, Technical University of Denmark.] are found theoretically and empirically to suffer two problems: ① penalize the model more heavily than BIC and ② perform unsatisfactorily in low noise cases as redundant factors can not be effectively suppressed. A novel VB treatment is proposed in this paper to resolve the two problems and a simulation study is conducted to testify its improved performance over existing treatments.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2008.11.002