Excited-State Hydrogen-Atom Transfer along Solvent Wires:  Water Molecules Stop the Transfer

Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-02, Vol.110 (5), p.1758-1766
Hauptverfasser: Tanner, Christian, Thut, Markus, Steinlin, Andreas, Manca, Carine, Leutwyler, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1766
container_issue 5
container_start_page 1758
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 110
creator Tanner, Christian
Thut, Markus
Steinlin, Andreas
Manca, Carine
Leutwyler, Samuel
description Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solvent-wire clusters 7HQ·(NH3) n ·(H2O) m , n + m = 3, using resonant two-photon ionization (R2PI) and UV−UV hole-burning spectroscopies. Substitution of H2O for NH3 has a dramatic effect on the excited-state H-atom transfer:  The threshold for the ESHAT reaction is ∼200 cm-1 for 7HQ·(NH3)3, ∼350 cm-1 for both isomers of the 7HQ·(NH3)2·H2O cluster, and ∼600 cm-1 for 7HQ·NH3·(H2O)2 but increases to ∼2000 cm-1 for the pure 7HQ·(H2O)3 water-wire cluster. To understand the effect of the chemical composition of the solvent wire on the H-atom transfer, the reaction profiles of the low-lying electronic excited states of the n = 3 pure and mixed solvent-wire clusters are calculated with the configuration interaction singles (CIS) method. For those solvent wires with an NH3 molecule at the first position, injection of the H atom into the wire can occur by tunneling. However, further H-atom transfer is blocked by a high barrier at the first (and second) H2O molecule along the solvent wire. H-atom transfer along the entire length of the solvent wire, leading to formation of the 7-ketoquinoline (7KQ*) tautomer, cannot occur for any of the H2O-containing clusters, in agreement with experimentally observed absence of 7KQ* fluorescence.
doi_str_mv 10.1021/jp056151b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67625849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67625849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-9b7cf0630703973dd4d48ceccc0626fb08af525d44ebceb72c7e645f0b8cbaea3</originalsourceid><addsrcrecordid>eNptkM1O3DAUha2qVYefLngB5E2RWKRcx3F-uhsNUBCDqDSp6KqW49wMGTLxYDsIdmz7mjwJrmY03bC6V7rfOUf3EHLA4BuDmJ0sViBSJlj1gewwEUMkYiY-hh3yIhIpL0Zk17kFADAeJ5_JiKWJYABih_w5e9KtxzqaeeWRXjzX1syxj8beLGlpVe8atFR1pp_Tmekesff0trXovr--_KW3QWPptelQDx06OvNmRf0dbpX75FOjOodfNnOP_Do_KycX0fTmx-VkPI0UF8xHRZXpBlIOGfAi43Wd1EmuUWsNaZw2FeSqEbGokwQrjVUW6wzDCw1Uua4UKr5Hjta-K2seBnReLlunsetUj2ZwMs3SWORJEcDjNaitcc5iI1e2XSr7LBnIf2XKbZmBPdyYDtUS6__kpr0ARGugdR6ftndl70Mgz4Qsf84k_z09Py2vTmUZ-K9rXmknF2awfejkneA3yR2MTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67625849</pqid></control><display><type>article</type><title>Excited-State Hydrogen-Atom Transfer along Solvent Wires:  Water Molecules Stop the Transfer</title><source>MEDLINE</source><source>ACS Publications</source><creator>Tanner, Christian ; Thut, Markus ; Steinlin, Andreas ; Manca, Carine ; Leutwyler, Samuel</creator><creatorcontrib>Tanner, Christian ; Thut, Markus ; Steinlin, Andreas ; Manca, Carine ; Leutwyler, Samuel</creatorcontrib><description>Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solvent-wire clusters 7HQ·(NH3) n ·(H2O) m , n + m = 3, using resonant two-photon ionization (R2PI) and UV−UV hole-burning spectroscopies. Substitution of H2O for NH3 has a dramatic effect on the excited-state H-atom transfer:  The threshold for the ESHAT reaction is ∼200 cm-1 for 7HQ·(NH3)3, ∼350 cm-1 for both isomers of the 7HQ·(NH3)2·H2O cluster, and ∼600 cm-1 for 7HQ·NH3·(H2O)2 but increases to ∼2000 cm-1 for the pure 7HQ·(H2O)3 water-wire cluster. To understand the effect of the chemical composition of the solvent wire on the H-atom transfer, the reaction profiles of the low-lying electronic excited states of the n = 3 pure and mixed solvent-wire clusters are calculated with the configuration interaction singles (CIS) method. For those solvent wires with an NH3 molecule at the first position, injection of the H atom into the wire can occur by tunneling. However, further H-atom transfer is blocked by a high barrier at the first (and second) H2O molecule along the solvent wire. H-atom transfer along the entire length of the solvent wire, leading to formation of the 7-ketoquinoline (7KQ*) tautomer, cannot occur for any of the H2O-containing clusters, in agreement with experimentally observed absence of 7KQ* fluorescence.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp056151b</identifier><identifier>PMID: 16451005</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Hydrogen - chemistry ; Hydrogen Bonding ; Solvents - chemistry ; Ultraviolet Rays ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2006-02, Vol.110 (5), p.1758-1766</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-9b7cf0630703973dd4d48ceccc0626fb08af525d44ebceb72c7e645f0b8cbaea3</citedby><cites>FETCH-LOGICAL-a351t-9b7cf0630703973dd4d48ceccc0626fb08af525d44ebceb72c7e645f0b8cbaea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp056151b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp056151b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16451005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanner, Christian</creatorcontrib><creatorcontrib>Thut, Markus</creatorcontrib><creatorcontrib>Steinlin, Andreas</creatorcontrib><creatorcontrib>Manca, Carine</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><title>Excited-State Hydrogen-Atom Transfer along Solvent Wires:  Water Molecules Stop the Transfer</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solvent-wire clusters 7HQ·(NH3) n ·(H2O) m , n + m = 3, using resonant two-photon ionization (R2PI) and UV−UV hole-burning spectroscopies. Substitution of H2O for NH3 has a dramatic effect on the excited-state H-atom transfer:  The threshold for the ESHAT reaction is ∼200 cm-1 for 7HQ·(NH3)3, ∼350 cm-1 for both isomers of the 7HQ·(NH3)2·H2O cluster, and ∼600 cm-1 for 7HQ·NH3·(H2O)2 but increases to ∼2000 cm-1 for the pure 7HQ·(H2O)3 water-wire cluster. To understand the effect of the chemical composition of the solvent wire on the H-atom transfer, the reaction profiles of the low-lying electronic excited states of the n = 3 pure and mixed solvent-wire clusters are calculated with the configuration interaction singles (CIS) method. For those solvent wires with an NH3 molecule at the first position, injection of the H atom into the wire can occur by tunneling. However, further H-atom transfer is blocked by a high barrier at the first (and second) H2O molecule along the solvent wire. H-atom transfer along the entire length of the solvent wire, leading to formation of the 7-ketoquinoline (7KQ*) tautomer, cannot occur for any of the H2O-containing clusters, in agreement with experimentally observed absence of 7KQ* fluorescence.</description><subject>Hydrogen - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Solvents - chemistry</subject><subject>Ultraviolet Rays</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1O3DAUha2qVYefLngB5E2RWKRcx3F-uhsNUBCDqDSp6KqW49wMGTLxYDsIdmz7mjwJrmY03bC6V7rfOUf3EHLA4BuDmJ0sViBSJlj1gewwEUMkYiY-hh3yIhIpL0Zk17kFADAeJ5_JiKWJYABih_w5e9KtxzqaeeWRXjzX1syxj8beLGlpVe8atFR1pp_Tmekesff0trXovr--_KW3QWPptelQDx06OvNmRf0dbpX75FOjOodfNnOP_Do_KycX0fTmx-VkPI0UF8xHRZXpBlIOGfAi43Wd1EmuUWsNaZw2FeSqEbGokwQrjVUW6wzDCw1Uua4UKr5Hjta-K2seBnReLlunsetUj2ZwMs3SWORJEcDjNaitcc5iI1e2XSr7LBnIf2XKbZmBPdyYDtUS6__kpr0ARGugdR6ftndl70Mgz4Qsf84k_z09Py2vTmUZ-K9rXmknF2awfejkneA3yR2MTA</recordid><startdate>20060209</startdate><enddate>20060209</enddate><creator>Tanner, Christian</creator><creator>Thut, Markus</creator><creator>Steinlin, Andreas</creator><creator>Manca, Carine</creator><creator>Leutwyler, Samuel</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060209</creationdate><title>Excited-State Hydrogen-Atom Transfer along Solvent Wires:  Water Molecules Stop the Transfer</title><author>Tanner, Christian ; Thut, Markus ; Steinlin, Andreas ; Manca, Carine ; Leutwyler, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-9b7cf0630703973dd4d48ceccc0626fb08af525d44ebceb72c7e645f0b8cbaea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Hydrogen - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Solvents - chemistry</topic><topic>Ultraviolet Rays</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanner, Christian</creatorcontrib><creatorcontrib>Thut, Markus</creatorcontrib><creatorcontrib>Steinlin, Andreas</creatorcontrib><creatorcontrib>Manca, Carine</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanner, Christian</au><au>Thut, Markus</au><au>Steinlin, Andreas</au><au>Manca, Carine</au><au>Leutwyler, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excited-State Hydrogen-Atom Transfer along Solvent Wires:  Water Molecules Stop the Transfer</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2006-02-09</date><risdate>2006</risdate><volume>110</volume><issue>5</issue><spage>1758</spage><epage>1766</epage><pages>1758-1766</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solvent-wire clusters 7HQ·(NH3) n ·(H2O) m , n + m = 3, using resonant two-photon ionization (R2PI) and UV−UV hole-burning spectroscopies. Substitution of H2O for NH3 has a dramatic effect on the excited-state H-atom transfer:  The threshold for the ESHAT reaction is ∼200 cm-1 for 7HQ·(NH3)3, ∼350 cm-1 for both isomers of the 7HQ·(NH3)2·H2O cluster, and ∼600 cm-1 for 7HQ·NH3·(H2O)2 but increases to ∼2000 cm-1 for the pure 7HQ·(H2O)3 water-wire cluster. To understand the effect of the chemical composition of the solvent wire on the H-atom transfer, the reaction profiles of the low-lying electronic excited states of the n = 3 pure and mixed solvent-wire clusters are calculated with the configuration interaction singles (CIS) method. For those solvent wires with an NH3 molecule at the first position, injection of the H atom into the wire can occur by tunneling. However, further H-atom transfer is blocked by a high barrier at the first (and second) H2O molecule along the solvent wire. H-atom transfer along the entire length of the solvent wire, leading to formation of the 7-ketoquinoline (7KQ*) tautomer, cannot occur for any of the H2O-containing clusters, in agreement with experimentally observed absence of 7KQ* fluorescence.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16451005</pmid><doi>10.1021/jp056151b</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-02, Vol.110 (5), p.1758-1766
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_67625849
source MEDLINE; ACS Publications
subjects Hydrogen - chemistry
Hydrogen Bonding
Solvents - chemistry
Ultraviolet Rays
Water - chemistry
title Excited-State Hydrogen-Atom Transfer along Solvent Wires:  Water Molecules Stop the Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excited-State%20Hydrogen-Atom%20Transfer%20along%20Solvent%20Wires:%E2%80%89%20Water%20Molecules%20Stop%20the%20Transfer&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Tanner,%20Christian&rft.date=2006-02-09&rft.volume=110&rft.issue=5&rft.spage=1758&rft.epage=1766&rft.pages=1758-1766&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp056151b&rft_dat=%3Cproquest_cross%3E67625849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67625849&rft_id=info:pmid/16451005&rfr_iscdi=true