Effect of Metal Ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and Water Coordination on the Structure of Glycine and Zwitterionic Glycine
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly·M n +(H2O) m an...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-02, Vol.110 (5), p.1960-1967 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly·M n +(H2O) m and GlyZwitt·M n +(H2O) m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly·M n + (M n + = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies ΔG° are negative and span a rather broad energy interval (from −90 to −1100 kJ mol-1), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (−1076 kJ mol-1) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly·M n +(H2O) m and GlyZwitt·M n +(H2O) m (M n + = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly·M n + and GlyZwitt·M n + complexes reduces the relative stability of metallic complexes of glycine. For M n + = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly·K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol-1) of the GlyZwitt·K+(H2O)5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (−10 to −38 kJ mol-1), and the NO coordination is preferred in the Gly· |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp054119b |